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Abstract 

Background: Mass spectrometry imaging (MSI) derives spatial molecular distribution maps directly from clinical 
tissue specimens and thus bears great potential for assisting pathologists with diagnostic decisions or personalized 
treatments. Unfortunately, progress in translational MSI is often hindered by insufficient quality control and lack of 
reproducible data analysis. Raw data and analysis scripts are rarely publicly shared. Here, we demonstrate the applica‑
tion of the Galaxy MSI tool set for the reproducible analysis of a urothelial carcinoma dataset.

Methods: Tryptic peptides were imaged in a cohort of 39 formalin‑fixed, paraffin‑embedded human urothelial can‑
cer tissue cores with a MALDI‑TOF/TOF device. The complete data analysis was performed in a fully transparent and 
reproducible manner on the European Galaxy Server. Annotations of tumor and stroma were performed by a patholo‑
gist and transferred to the MSI data to allow for supervised classifications of tumor vs. stroma tissue areas as well as for 
muscle‑infiltrating and non‑muscle infiltrating urothelial carcinomas. For putative peptide identifications, m/z features 
were matched to the MSiMass list.

Results: Rigorous quality control in combination with careful pre‑processing enabled reduction of m/z shifts and 
intensity batch effects. High classification accuracy was found for both, tumor vs. stroma and muscle‑infiltrating vs. 
non‑muscle infiltrating urothelial tumors. Some of the most discriminative m/z features for each condition could 
be assigned a putative identity: stromal tissue was characterized by collagen peptides and tumor tissue by histone 
peptides. Immunohistochemistry confirmed an increased histone H2A abundance in the tumor compared to the 
stroma tissues. The muscle‑infiltration status was distinguished via MSI by peptides from intermediate filaments such 
as cytokeratin 7 in non‑muscle infiltrating carcinomas and vimentin in muscle‑infiltrating urothelial carcinomas, which 
was confirmed by immunohistochemistry. To make the study fully reproducible and to advocate the criteria of FAIR 
(findability, accessibility, interoperability, and reusability) research data, we share the raw data, spectra annotations 
as well as all Galaxy histories and workflows. Data are available via ProteomeXchange with identifier PXD026459 and 
Galaxy results via https:// github. com/ foell melan ie/ Bladd er_ MSI_ Manus cript_ Galaxy_ links.
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Background
Mass spectrometry imaging (MSI) is a label-free and 
untargeted method to generate spatial distribution 
maps for hundreds to thousands of molecules directly 
from a single tissue section. The most common MSI 
technique is based on matrix assisted laser desorp-
tion/ionization (MALDI) mass spectrometry and called 
MALDI MSI or MALDI imaging. It allows spatial reso-
lution in the low micrometer range while preserving the 
integrity of the measured molecules such as proteins, 
peptides, metabolites and lipids. After the MALDI 
measurement, the tissue section remains amenable to 
histological staining, which can be compared to the 
measured molecular distributions. Molecular histology 
impacts many aspects of histopathological diagnostics 
and research and thus MSI is emerging as a powerful 
technology in translational studies [1, 2]. In particular, 
the analysis of tumor tissues with pronounced cellular 
and morphological heterogeneity benefits from the spa-
tially resolved MSI technology [3, 4]. Common applica-
tions for MSI in cancer studies include tumor typing 
and subtyping [5–7], studying resection margins and 
tumor heterogeneity [8, 9], and finding biomarkers for 
tumor diagnosis, prognosis or prediction [10–12].

The successes seen in translational MSI studies high-
light the great potential for MSI in clinical settings, 
which require thorough quality control, good experi-
mental design as well as standardized and reproduc-
ible experiments, analysis and reporting [2, 13–16]. 
Despite their general importance for any omics-study, 
such aspects are only starting to become topics of 
research and developments in MSI. Recently, two stud-
ies emerged, which demonstrated that standardized 
sample preparation protocols allow for reproducible 
MSI across several laboratories [14, 15]. Suggestions for 
the inclusion of quality metrics into sample preparation 
protocols were made by Gustafsson et al. (use of inter-
nal peptide standards to measure and re-adjust mass 
accuracy [17]) and Erich et al. (implementation of qual-
ity controls for tryptic digestion efficiency [13]).

In contrast, in most MSI studies the data analysis 
part is neither standardized, transparent nor repro-
ducible, even though this part of an MSI experiment 
can be improved with the least effort. It requires pub-
lishing raw data and metadata as well as reporting the 

entire multistep analysis workflow with all fine grained 
parameters and settings in an accessible way.

We have previously established MSI tools in the Gal-
axy platform for reproducible MSI analyses [18]. Galaxy 
represents a highly suitable platform for reproducible 
biomedical data science allowing to track provenance, 
store tool names, versions and all set parameters for all 
analyses in publishable Galaxy history. Galaxy is accessi-
ble for every researcher, offers a graphical user interface, 
and comprises free access to thousands of pre-installed 
tools and large public computational resources. Galaxy 
also enables high levels of interoperability by implying 
tools of different omics domains, which can be connected 
to build (multi-omics) workflows. Also, analysis histories 
and workflows can be shared privately, with collaboration 
partners or publicly, allowing full transparent and repro-
ducible data analyses.

Here, we aim to showcase that a fully transparent and 
reproducible data analysis of a translational MSI cancer 
study is possible in the Galaxy framework.

As a use case, we have imaged patient derived urothe-
lial tissue cohort comprising urothelial cancer, precursor 
lesions and benign tissues for their spatial tryptic pep-
tide composition. Based on these tissues we established 
a classifier for two different tissue types, urothelial tumor 
and stroma. Considering urothelial tumor, an additional 
classifier was built to distinguish between the two clini-
cal relevant groups: muscle-infiltrating urothelial car-
cinoma and non-muscle infiltrating papillary urothelial 
carcinoma low grade (pTa low). The latter classifier could 
be applied to estimate the molecular risk of progression 
for three non-muscle infiltratingpapillary urothelial car-
cinoma high-grade (pTa high) tissues. The classification 
of tumor areas from their surrounding stroma tissue is 
the key for tumor specific analysis. Currently, most MSI 
tumor studies rely on the manual annotation of tumor 
areas by a pathologist, which is a bottleneck in terms of 
available experts and time constraints, which could be 
overcome by applying automated classification of the 
two tissue types. The complete analysis including quality 
control, image co-registration, filtering regions of inter-
est (ROIs), combining files, pre-processing, classification, 
and visualization was performed in a single platform: the 
European Galaxy server [19]. This allowed for the easy 
sharing of all analysis histories together with all raw and 
intermediate data to enable FAIR (findable, accessible, 

Conclusion: Here, we show that translational MSI data analysis in a fully transparent and reproducible manner is pos‑
sible and we would like to encourage the community to join our efforts.

Keywords: Mass spectrometry imaging, MALDI imaging, Formalin‑fixed paraffin‑embedded tissues, Reproducibility, 
Urothelial tissue, Urothelial cancer, Bladder, Spatial proteomics
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interoperable, and re-usable) data sharing and full trans-
parency and reproducibility [20].

Methods
Patient cohort
Forty-nine bladder tissue specimens from 47 patients 
were collected during transurethral resection at the 
University Medical Center in Freiburg. The study was 
approved by the Ethics Committee of the University 
Medical Center Freiburg (no. 491/16). All patients gave 
written informed consent. Before study inclusion, all 
patient data were pseudonymized.

Bladder tissue specimens were formalin-fixed directly 
after surgical removal and paraffin-embedded as 
described previously [21]. All tissue specimens were 
reviewed by two experienced pathologists. Biopsie tis-
sue cores with 2 mm diameter were extracted from each 
formalin-fixed paraffin embedded (FFPE) tissue block 
and randomly assembled into two FFPE tissue micro-
arrays (TMA) blocks. The following tissue cores were 
included into the TMA: Muscle-infiltrating urothelial 
cancer (n = 12), non-muscle infiltrating papillary urothe-
lial carcinoma high- (pTa high, n = 5)/low grade (pTa 
low, n = 20), carcinoma in situ (pTis, n = 2), and papillary 
urothelial neoplasm of low malignant potential (PUN-
LUMP, n = 2), as well as inflammatory bladder specimens 
(n = 8). 6 µm thick sections were sliced with a microtome 
and mounted onto indium tin oxide (ITO) coated glass 
slides (Bruker Daltonik, Bremen, Germany).

MSI sample preparation
Tissue deparaffinization was performed in xylol and etha-
nol/water solutions as described previously [21]. Tissue 
sections were rinsed twice in 10 mM ammonium bicar-
bonate  (NH4HCO3) for 1 min. Antigen retrieval was per-
formed in citric acid monohydrate pH 6.0, in a steamer 
for 1  h at approximately 100  °C [22]. Rinsing in ammo-
nium bicarbonate was repeated twice and the samples 
were air dried afterwards. TPCK treated Trypsin (Wor-
thington, Lakewood, NJ, USA) was sprayed onto the 
tissue sections using iMatrixSpray (Tardo Gmbh, Sub-
ingen, Switzerland); 60  mm height, 1  mm line distance, 
180 mm/s speed, 0.5 µl/cm3 density, 10 cycles, 10 s delay 
[23]. Digestion was performed for 2 h at 50 °C in a diges-
tion chamber with 97% humidity maintained by a satu-
rated potassium sulfate  (K2SO4) solution [14]. 10 mg/ml 
alpha-cyano-4-hydroxycinnamic acid (CHCA, Sigma-
Aldrich, Munich, Germany) matrix was prepared in 50% 
(v/v) acetonitrile and 1% (v/v) trifluoroacetic acid. Matrix 
solution was mixed 12:1 (v/v) with an internal calibrant 
mix containing 0.08  µg/ml Angiotensin I (Anaspec, 
Seraing, Belgium), 0.04  µg/ml Substance P (Anaspec, 
Seraing, Belgium), 0.15  µg/µl [Glu]-Fibrinopeptide B 

(Sigma-Aldrich, Munich, Germany), and 0.30  µg/µl 
ACTH fragment (18–39) (Abcam, Cambridge, UK) [17]. 
The matrix-calibrant mixture was sprayed onto the tissue 
sections using iMatrixSpray; 60  mm height, 1  mm line 
distance, 180 mm/s speed, 0.5 µl/cm3 density, 20 cycles, 
5 s delay.

MSI data acquisition
Tissue sections were measured with a 4800 MALDI-
TOF/TOF Analyzer (Applied Biosystems, Waltham, MA, 
USA) using the 4000 Series Explorer software (Novartis 
and Applied Biosystems) to set instrument parameters. 
A squared region was imaged with 150  µm raster step 
size, a laser focus of 100  µm diameter and by averag-
ing 500 laser shots per spectrum in a mass range from 
800 to 2300 m/z in positive ion reflectron mode. Before 
starting the imaging measurement, internal calibrants in 
a spectrum outside the tissue region were used for m/z 
re-calibration.

H&E staining and annotation
Matrix was removed from the slides by rinsing with 70% 
ethanol after MSI measurement. Afterwards, hemalum 
staining of the measured tissue was performed by 
immersing the tissue sections in Mayer’s acid Hemalum 
solution (Waldeck, Münster, Germany) for 1  min and 
rinsing with water for 1 min. Dehydration was performed 
with four short incubations in 100% ethanol and 2 incu-
bations in xylol. Stained tissues were scanned at × 20 
magnification. A pathologist (KEA) annotated a coher-
ent area within the largest tumor and stroma regions in 
photoshop CS5 (Adobe, San Jose, USA). Only annotated 
spectra were considered for further analysis.

MSI quality control, data handling and pre‑processing
Analyze7.5 files were uploaded to the European Galaxy 
server [24], where the complete analysis was performed 
and afterwards published [18, 19]. First, a quality control 
with the MSI qualitycontrol tool (m/z of interest: four 
internal calibrants, ppm range: 200) was performed to 
ensure sufficient quality of the data and to find appropri-
ate parameters for the following pre-processing steps. A 
previously published Galaxy workflow [18] was slightly 
modified and applied for co-registration of the stained 
image and the MSI image for each TMA separately. Six 
visually determined characteristic tissue spots were used 
as teachmarks for affine transformation. The obtained 
warping matrix was applied to extract the coordinates 
corresponding to the annotated regions from the MSI 
data leading to 2169 tumor and stroma specific spectra, 
while all pTis and PUNLUMP spectra were removed. 
Both files were binned in 50  ppm  m/z steps and cut 
to their common m/z range 800–2300 in the ‘MSI 
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preprocessing’ tool (method: m/z binning, width of bin: 
50, unit for bin: ppm, select m/z options: change m/z 
range, minimum value for m/z: 800, maximum value for 
m/z: 2300 and combined into one dataset using the ‘MSI 
combine’ tool (Optional annotation of pixels with tabular 
files: TMA1 annotations, TMA2 annotations). The Car-
dinal (v 2.6.0) [25] based ‘MSI preprocessing’ tool was 
used for pre-processing: gaussian smoothing (window: 8, 
standard deviation: 2), baseline reduction (blocks: 750), 
m/z alignment (tolerance: 200 ppm), peak picking (signal 
to noise: 5, blocks: 600, window: 10), alignment (toler-
ance: 200 ppm) and filtering (frequency: 0.01) to obtain 
a common m/z peak list. The m/z peak list was used to 
extract the original peptide intensity from the smoothed 
and baseline reduced dataset by peak binning (toler-
ance: 200 ppm) in the ‘MSI preprocessing’ tool. Mass re-
calibration (tolerance: 200  ppm) was performed based 
on the three internal calibrants within the m/z range 
and the most abundant tryptic autolysis peptide (m/z 
405.42) using the align spectra function of the MALDI-
quant peak detection tool [tolerance: 0.0002, don’t throw 
an error when less than 2 reference m/z were found in a 
spectrum: yes, If TRUE the intensity values of MassSpec-
trum or MassPeaks objects with missing (NA) warping 
functions are set to zero: yes, Should empty spectra be 
removed: yes]. Afterwards the processed imzML data 
was converted into a continuous file with the ‘MSI pre-
processing’ tool (Processed imzML file: yes, mass accu-
racy to which the m/z values will be binned: 0.005, unit of 
the mass accuracy: mz; preprocessing method: peak fil-
tering, minimum frequency 0.01). Potential contaminant 
m/z features were removed with the ‘MSI filtering’ tool 
(Select m/z feature filtering option: remove m/z, tabular 
file with m/z features to remove: potential contaminant 
list, window in which all m/z will be removed: 200, units: 
ppm). The potential contaminant list was built based on 
the internal calibrants as well as CHCA matrix peaks and 
bovine trypsin peptides. The m/z of the latter two were 
obtained from the MALDI contaminant list published by 
Keller [26]. Finally, intensity normalization to the total 
ion current (TIC) of each spectrum was performed in the 
‘MSI preprocessing’ tool. Between and after the pre-pro-
cessing steps eight times a quality control was performed 
with the ‘MSI qualitycontrol’ tool using the three inter-
nal calibrants, a 200  ppm range and spectra annotation 
information to summarize either the properties of each 
TMA or of each patient tissue core.

MSI statistical modelling, visualizations and identification
The pre-processed file was subjected to spectra classifi-
cation using Cardinal’s spatial shrunken centroids (SSC) 
algorithm [27] in the ‘MSI classification’ tool. For tumor 
vs. stroma classification, stroma of non-malignant tissues 

and tumor tissues were not separated. All 39 patients 
were split randomly 80:20 into training (n = 31) and test 
group (n = 8). The patients of the training group were 
split into ten random groups. The scikit learn [28] based 
Split Dataset tool was used for all the patient grouping 
steps and the ‘MSI filtering’ tool in order to separate all 
training and test spectra into separate imzML files. First, 
tenfold cross validation was performed on the training 
file in the ‘MSI classification’ tool (Pixel coordinates and 
their classes: file from Split Dataset tool that contains the 
spectra conditions and folds of the training data, select 
the method for classification: spatial shrunken centroids, 
analysis step to perform: cvApply, write out best r and s 
values: yes, r: 2, s: 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 
24, 26, 28, 30, 32, 34, 36, 38, 40, method to use to calcu-
late the spatial smoothing kernels: adaptive) to find opti-
mal classification parameters. The optimized parameters 
(r = 2, s = 18) were applied to build a classifier on the 
training data with the ‘MSI classification’ tool (Pixel coor-
dinates and their classes: file from Split Dataset tool that 
contains the spectra conditions of the training data, select 
the method for classification: spatial shrunken centroids, 
analysis step to perform: spatial shrunken centroids, r: 2, 
s: 18, method to use to calculate the spatial smoothing 
kernels: adaptive, Results as.RData output: yes). The clas-
sifier obtained as.RData file was then applied to the test 
data in the ‘MSI classification’ tool (Analysis step to per-
form: prediction, which classification method was used: 
SSC_classifier, load annotations: use annotations, load 
tabular file with pixel coordinates and the new response: 
file from Split Dataset tool that contains the spectra con-
ditions of the test data).

For muscle-infiltrating vs. non-muscle infiltrating 
low-grade tumor classification, only tumor ROIs from 
muscle-infiltrating urothelial cancer and non-muscle 
infiltrating low-grade papillary urothelial cancer were 
included into the analysis. Patients were randomly 
assigned 80:20 into training (n = 20) and test group 
(n = 6). The training group was further split into five 
random groups and fivefold cross validation was per-
formed to find optimal classification parameters. Again, 
the scikit learn based Split Dataset tool was used for all 
the patient grouping steps and the ‘MSI filtering’ tool in 
order to separate all training and test spectra into sep-
arate imzML files. First, five-fold cross validation was 
performed on the training file in the ‘MSI classification’ 
tool (Pixel coordinates and their classes: file from Split 
Dataset tool that contains the spectra conditions and 
folds of the training data, select the method for clas-
sification: spatial shrunken centroids, analysis step to 
perform: cvApply, write out best r and s values: yes, r: 
2, s: 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, method to use 
to calculate the spatial smoothing kernels: adaptive) to 
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find optimal classification parameters. The optimized 
parameters (r = 2, s = 4) were used to build a classi-
fier on the training data with the ‘MSI classification’ 
tool (Pixel coordinates and their classes: file from Split 
Dataset tool that contains the spectra conditions of the 
training data, select the method for classification: spa-
tial shrunken centroids, analysis step to perform: spatial 
shrunken centroids, r: 2, s: 4, method to use to calcu-
late the spatial smoothing kernels: adaptive, Results 
as.RData output: yes). The classifier obtained as.RData 
file was then applied to the test data in the ‘MSI clas-
sification’ tool (Analysis step to perform: prediction, 
which classification method was used: SSC_classifier, 
load annotations: use annotations, load tabular file with 
pixel coordinates and the new response: file from Split 
Dataset tool that contains the spectra conditions of the 
test data).

Furthermore, this classifier was applied to the tumor 
ROIs of the three non-muscle infiltrating high-grade 
papillary urothelial cancers to predict their infiltration 
potential by using the ‘MSI classification’ tool (Analy-
sis step to perform: prediction, which classification 
method was used: SSC_classifier, load annotations: 
use annotations, load tabular file with pixel coordi-
nates and the new response: file from Split Dataset tool 
that contains the spectra conditions of the high-grade 
tumors). The most discriminative m/z features were 
selected according to the highest t-statistic values and 
their abundances in the different groups were visual-
ized. Ion images were plotted with the ‘MSI mz images’ 
tool (plusminus m/z: 0.25, contrast enhancement ‘his-
togram’) on the binned, filtered, and combined data, 
which was TIC normalized in the ‘MSI preprocessing’ 
tool in a separate step only for visualization purposes. 
Average mass spectra plots per group were generated 
from binned, filtered, combined and smoothed MSI 
data with the ‘MSI plot spectra’ tool (choose spectra: 
plot single spectra, load tabular file with pixel coor-
dinates: combined spectra annotations, separate plot 
per spectrum or overlaid plot with average spectra per 
annotation group: overlaid spectra plots, zoomed in 
m/z range: tabular file with mz of interest, m/z value to 
subtract from m/z values in tabular file: 1, m/z value to 
add to m/z values in tabular file: 4, load tabular file with 
m/z values: file with top mz value per condition). All 
m/z features that were part of one of the two classifi-
ers (t-statistic value above zero) were matched with the 
Join two files tool (Choose the metrics of your distance: 
ppm, allowed distance between the two values that will 
trigger a merge: 200) to the downloaded MSiMass list 
[29] to obtain putative identifications. For Figs.  2, 3, 
4, 5, pdf files from Galaxy were imported into Adobe 

Illustrator CS2 to arrange subfigures and adjust the 
label sizes.

Immunohistochemistry
From the TMAs 2  µm-thick sections were cut and 
mounted onto glass slides. All glass slides were stored 
for 2 days at 58°C at the drying chamber, deparaffinized 
using xylene and dehydrated with ethanol. Subsequently 
all TMAs were stained using ready to use antibodies for 
vimentin (monoclonal mouse anti-Vimentin, DAKO, 
clone V9, code IR630), cytokeratin 7 (monoclonal mouse 
anti-human Cytokeratin 7, DAKO, clone OV-TL, code 
IR61961) and histone H2A (monoclonal rabbit anti-
human H2A.X(D17A3)XP, CellSignaling, code 7631). 
Host dependent Streptavidin–biotin based peroxidase 
detection was performed using the  EnVision® Flex Per-
oxidase-Blocking Reagent (DAKO, SM801),  EnVision® 
Flex + Rabbit (LINKER) (DAKO, SM804) or  EnVision® 
Flex + Mouse (LINKER) (DAKO, SM805) and  EnVision® 
Flex/HRP (DAKO, SM802). Counterstaining was per-
formed with hematoxylin before adding a cover slip. 
For external positive controls, tissue specimens derived 
from the colon, placenta and kidney were added onto the 
TMA.

Immunohistochemical assessment
Representative images of immunohistochemical stains 
are given in Figs. 6b–e and 7b–e. All slides were reviewed 
simultaneously by two experienced pathologists and one 
natural scientist via the Olympus BX51 microscope using 
a multi-viewing unit. Immunoreactivity for cytokeratin 
7 and vimentin was scored according to percentage of 
cytoplasmic positively stained cells within the tumor. For 
histone H2A, immunoreactivity was scored according to 
percentage of nuclear positively stained cells within the 
tumor and the tumor stroma separately from each other. 
Immunostaining was considered positive, when appro-
priate brown staining was seen in the tumor cell cyto-
plasm (cytokeratin 7/vimentin) or in the nucleus (histone 
H2A).

Immunohistological assessment and statistical analyses
Some tissue cores could not be evaluated, either due to 
being lost during preparation or because the tissue col-
umn in the tissue microarray was already empty. A few 
cores that were lost or damaged during MSI sample prep-
aration could be evaluated immunohistochemically. Wil-
coxon rank-sum test and Mann–Whitney-U-Test were 
used for statistical testing of paired and unpaired data, 
respectively.
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Results
Overview of the urothelial cancer cohort
The urothelial cancer cohort consisted of two TMAs 
comprising 49 bladder tissue cores derived from 47 
patients. Two tissue cores were lost during sample 
preparation and in three tissue cores, neither tumor 
nor stroma regions were withdrawn during TMA con-
struction. Due to the insufficient sample size number 
one pTis and two PUNLUMP were excluded from the 
analysis. The exclusion of these tissues led to a final 
cohort of 39 tissue cores from 39 patients (Table  1) 
and 2169 mass spectra out of which 1076 were anno-
tated as tumor and 1093 as stroma.

Transparency and reproducibility of the MSI data analysis 
in the Galaxy framework
Both TMAs were imaged for tryptic peptides, hema-
toxylin and eosin stained and annotated for tumor and 
stroma ROIs. Raw data and spectra annotation infor-
mation have been published via the PRIDE repository 
(identifier:PXD026459) [30]. The complete data analysis 
was performed on the European Galaxy server and was 
separated into seven different analysis histories, to keep 
the histories clearly arranged according to the differ-
ent analysis steps: co-registrations, data preparation and 
preprocessing, classifications, visualizations, and iden-
tification (Fig.  1a). To achieve full reproducibility and 
transparency of the study we published all Galaxy histo-
ries, which contain raw and intermediate files together 

Table 1 Overview of the patients and regions of interest (ROIs) of the urothelial cancer cohort

Tissue type Number patients Number tumor ROIs Number stroma ROIs Average age

Muscle‑infiltrating urothelial cancer 11 11 6 70.8

Non‑muscle infiltrating high‑grade papillary urothe‑
lial cancer (pTa high)

3 3 1 70.0

Non‑muscle infiltrating low‑grade papillary urothe‑
lial cancer (pTa low)

18 15 9 70.2

Non‑cancerous benign malignancies 7 0 7 65.4

Sum 39 29 23
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Fig. 1 Overview of the data analysis pipeline. a Overview of the performed analysis steps and their corresponding Galaxy histories. b Galaxy 
workflow for pre‑processing was built in a stepwise manner and combined with regular quality control steps. All Galaxy histories and workflows are 
published, links to them can be found in the ‘Availability of data and materials’ section
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with the tool name, tool version and all set parameters. 
For each of the first five analysis steps, Galaxy workflows 
were built and published to enable re-running the same 
analysis in a standardized and automated way. The pre-
processing workflow is depicted as an example in Fig. 1b.

Quality control and preprocessing
The acquired data showed pronounced intensity batch 
effects and m/z shifts, which could be removed through 
careful adjustment of the preprocessing steps. Key to 
observe and overcome these technical issues was the 
usage of internal calibrants [17] together with the Gal-
axy ‘MSI qualitycontrol’ tool, which generated more 
than 30 different descriptive plots. Both TMAs showed 
systematically increasing m/z values for the internal cali-
brants during the course of the measurement (Fig.  2a). 
This suggests that the TOF tube of the near-antique 
mass spectrometer, which was not built to acquire tens 

of thousands of spectra in a row, heated up during the 
measurement. These m/z shifts could be removed by 
aligning each spectrum to the mean spectrum and re-
calibrating the m/z positions via the internal calibrants 
(Fig. 2b).

Intensity batch effects were observed between the two 
measurements with higher intensities in TMA2 (Fig. 2a). 
As the baseline was already removed during data acquisi-
tion, TIC normalization could not be performed on the 
raw data as suggested by Deininger et  al. [31]. Instead 
we were able to reduce the batch effects (Fig. 2b) by per-
forming TIC normalization after peak picking and con-
taminant removal as suggested by Fonville [32].

Classification of tumor and stroma spectra
In several cancers, tumor cells are intermingled or sur-
rounded by connective tissue, the so-called tumor 
stroma, which is part of the tumor microenvironment. To 

Fig. 2 Data properties accessed by the ‘MSI qualitycontrol’ tool. a Mass and intensity shifts before pre‑processing. b Mass and intensity shifts could 
be reduced through careful adjustment of pre‑processing steps and parameters
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distinguish tumor and stroma tissue types, we have built 
a classifier, which reached 94% on the training and 99% 
on the test datasets with high sensitivity and specificity 
(Table 2). To avoid overfitting, we generated training and 
test datasets by splitting patients randomly into the two 
groups and thus guarantee that all spectra of the same 
patient are present only in one of the two groups. Despite 
these precautions, the classification accuracy is likely too 
optimistic due to the small amount of samples. During 
classification, feature selection was performed by shrink-
ing the number of m/z features that are included into the 
classifier to a minimum. 77 m/z features were included in 
the classifier (t-statistic > 0) out of which 37 were describ-
ing tumor and 40 stroma spectra (Fig.  3a). m/z 901.49 
and 868.47 had the highest t-statistics for tumor and 
stroma respectively and were therefore the most discrim-
inative m/z features (Fig. 3b, c).

Classification of infiltration behavior
Next, we were interested in classifying tumors accord-
ing to their infiltration status. Only spectra correspond-
ing to muscle-infiltrating urothelial cancer (n = 11, 731 
spectra) and non-muscle infiltrating low-grade papillary 
urothelial cancer (n = 15, 312 spectra) were included to 
compare both tumor subtypes. Classification accuracies 
for the training data were 96 and 99% for the test data 
with high sensitivity and specificity (Table 3). Again, the 

classification accuracy is likely too optimistic due to the 
small amount of samples. The classifier included 35 m/z 
features to classify muscle-infiltrating and 36  m/z fea-
tures to classify non-muscle infiltrating tumors (Fig. 4a). 
The m/z feature 944.53 was the most discriminative for 
muscle-infiltrating tumor and m/z 1104.57 for non-infil-
trating tumors (Fig. 4b, c).

Prediction of muscle‑infiltration potential of high‑grade 
carcinomas
Non-muscle infiltrating high-grade urothelial cancers 
are not muscle infiltrating but are considered high-risk 
tumors as their risk of progression ranges from 15 to 
40% and is thus much higher compared to Non-muscle 
infiltrating low-grade cancers [33]. The tissue cohort 
included three non-muscle infiltrating high-grade papil-
lary urothelial cancer tissues (33 spectra), which were not 
included into the classification analysis because of their 
low sample number and being present only in one of the 
two TMAs.

Instead, we determined their muscle-infiltration poten-
tial by classifying them with the previously built classifier 
into muscle-infiltrating and non-muscle infiltrating can-
cers. With a total of only three patients, this analysis step 
is rather illustrative. The majority of spectra of all three 
tissue cores was classified as non-muscle infiltrating but 

Table 2 Classification results tumor vs. stroma tissues

Accuracy Sensitivity Specificity

Training 0.94 0.94 0.94

Test 0.99 1 0.98
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Fig. 3 Classification results tumor vs. stroma and visualizations of the top m/z features of tumor and stroma respectively. a Classification included 
feature selection based on t‑statistics values above zero reveals 37 tumor specific and 40 stroma specific m/z features. b Average mass spectra 
plots for the top m/z feature per group on binned, filtered, combined and smoothed MSI data. c Ion images of the top m/z feature per group were 
plotted on five tissue cores with contrast enhancement ‘histogram’ on binned, filtered, combined and TIC normalized data

Table 3 Classification results muscle‑infiltrating vs. non‑
infiltrating carcinomas

Accuracy Sensitivity Specificity

Training 0.96 0.95 0.99

Test 0.99 1 0.94
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in one tissue 2 out of 15 spectra were classified as muscle-
infiltrating and several other spectra were classified only 
with low probabilities as non-muscle infiltrating, suggest-
ing that this cancer might have the molecular potential 
to transition into a muscle-infiltrating cancer (Fig.  5). 
Unfortunately this hypothesis could not be verified by 
clinical data because the patient was lost to follow up.

Assigning identities to m/z features
To obtain an idea about the identity of the measured 
peptides, we assigned tentative identifications via the 
MSiMass list [29]. Out of 123 unique m/z features that 
were part of the two classifiers (t-statistics > 0), 16 were 

matched to an entry of the MSiMass list within 200 ppm 
mass tolerance (Table  4). Most tentative collagen pep-
tides were found in stromal regions and most keratin 
peptides in tumor regions, which is their expected loca-
tion in tumor tissues.

The tentative m/z identifications of the tumor-
stroma classifier point towards ubiquitous peptides 
that are likely to be found in other solid tumors and 
their surrounding stroma as well. Histone H2A and H4 
were part of the tumor classification and likely indica-
tors of increased cell density in the urothelium (transi-
tional epithelium) compared to stroma tissue, because 
their abundance is proportional to the amount of DNA 
[34]. Another potential hit for the tumor classifier 
was heat shock protein beta-1, which is a member of 
the heat shock protein family, which has been linked 
to (urothelial) cancers before [35, 36]. Stroma is con-
nective tissue and therefore characterized by protein 
fibrils made for example out of collagens. This intrin-
sically corroborates collagen alpha-1(1) and alpha-2(1) 
chain precursors, which we found to be important for 
stromal classification. Cytokeratin 16 has been associ-
ated with ureter, bladder and urethra and also kerati-
nization of urothelial carcinomas [37]. However, as an 
epithelial cell specific intermediate filament, it is prob-
ably a mis-identification as it was part of the stromal 
classifier.

The tentative m/z identifications of the infiltration clas-
sifier showed that several peptides from intermediate 
filament proteins such as cytokeratins and vimentin were 
important for the classification into muscle-infiltrating 
and non-muscle infiltrating tumors.
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Immunohistochemical (IHC) protein stainings
Three proteins were selected for confirmation via IHC: 
histone H2A, cytokeratin 7, and vimentin.

Histone H2A refers to a set of closely related proteins 
that are involved in packaging DNA molecules into chro-
matin and thus influence gene expression. In our study 
cohort, 100% of all tumor tissues stained positive and 
26 out of 27 stroma samples stained positive for histone 
H2A.X (Fig.  6). Staining intensity was medium or high 
in the majority of tissues. The percentage of positively 
stained cells was on median 100% in tumor and 80% in 
stroma tissues and the difference statistically significant 
(p-value of 0.0015 in Wilcoxon Rank Sum test). Together 
with the much higher cell density in the tumor areas 
compared to the stromal area this confirms the MSI 
results of more abundant histone H2A in tumor com-
pared to stroma tissue. However, in contrast to the MSI 
results, there was a very slight tendency towards more 
frequent and more intense staining of histone H2A in low 
grade compared to infiltrating urothelial cancer (p-value 
of 0.69 in Mann–Whitney-U-test).

Cytokeratine 7 is a type II intermediate filament pro-
tein that is present in most urothelial carcinomas [38]. 

IHC stainings were positive in 100% (14/14) of non-
muscle infiltrating urothelial carcinomas and 82% (9/11) 
muscle-infiltrating urothelial carcinomas (Fig.  7). This 
trend towards more cytokeratine 7 in non-muscle infil-
trating cancers was confirmed by Mann–Whitney-U-
test, however not statistically significant (approximated 
p-value of 0.07).

Vimentin is a type III intermediate filament protein 
involved in cell adhesion, migration and signalling [39]. 
Our stainings showed positive vimentin staining in 29% 
(4/14) non-muscle infiltrating urothelial carcinomas and 
80% (8/10) muscle-infiltrating urothelial carcinomas 
(Fig. 7). The difference in vimentin expression was statis-
tically significant in the Mann–Whitney-U-test (p-value 
0.026).

Discussion
We successfully conduct a fully transparent and repro-
ducible analysis of an urothelial cancer MSI study in the 
Galaxy framework. The complete analysis was performed 
on a single platform, the European Galaxy Server. The 
previously established Galaxy MSI tools [18] allowed 
for all necessary analysis steps to classify different tissue 

Table 4 Peptide m/z matches obtained via the MSiMass list

a Rounded two 2 decimals
b Same peptide shared by two proteins
c Potential isotope of the 1 m/z lighter m/z feature

Tentative protein identity Tentative peptide sequence Measured m/za MSiMass list m/z Mass 
 errora 
(ppm)

In classifier condition

Collagen alpha‑1(1) chain precur‑
sor

GVVGLPGQR (hydroxylated) 898.51 898.48 33.40 Stroma

Histone 2A AGLQFPVGR 944.53 944.54 10.56 Tumor and infiltrating

Keratin, type 1 cytoskeletal 18 STFSTNYR 975.51 975.45 61.52 Non‑infiltrating

Heat schock protein beta‑1 RVPFSLLR 987.53 987.54 5.09 Tumor

Keratin, type 1 cytoskeletal 19 DAEAWFTSR 1082.59 1082.52 64.63 Non‑infiltrating

Collagen alpha‑1(1) chain precur‑
sor

GVQGPPGPAGPR (hydroxylated) 1105.59 1105.58 13.54 Stroma and non‑infiltrating

Keratin, type 1 cytoskeletal 17 or 
 19b

TKFETEQALR 1222.64 1222.64 0.01 Non‑infiltrating

Keratin, type 1 cytoskeletal 16 NHEEEMLALR 1241.70 1241.6 80.50 Stroma

Histone H4 DNIQGITKPAIR 1325.75 1325.72 18.85 Tumor and infiltrating

Glutathione S‑transferase P PPYTVVYFPVR 1337.73 1337.7 22.41 Infiltrating

Keratin, type 2 cytoskeletal 7 SIHFSSPVFTSR Acetyl (Protein 
N‑term)

1406.68 1406.71 24.85 Non‑infiltrating

Keratin, type 2 cytoskeletal  6Ac ADTLTDEINFLR 1407.69 1407.71 14.25 Non‑infiltrating

Vimentin SLYASSPGGVYATR 1428.71 1428.71 0.03 Infiltrating

Collagen alpha‑1(1) chain precur‑
sor

GSAGPPGATGFPGAGR (hydroxy‑
lated)

1459.69 1459.71 13.74 Stroma

Keratin, type 1 cytoskeletal 19 QSSATSSFGGLGGGSVR 1554.74 1554.75 6.44 Non‑infiltrating

Collagen alpha‑2(1) chain precur‑
sor

GETGPSGPVGPAGAVGPR 1562.79 1562.8 6.37 Stroma
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Fig. 6 Histone H2A immunohistochemical staining results. a Percentage of positively stained cells in the different tumor subtypes and in stroma 
and tumor tissue respectively. b–d IHC stainings of three urothelial tumors all three with a 100% positive nuclear staining reaction for Histone H2A 
and a high nuclear expression (85%) within the tumor

Fig. 7 Cytokeratin 7 and Vimentin immunohistochemical staining results. a Percentage of positively stained cells in the non‑muscle infiltrating low 
grade and infiltrating carcinoma. Cytokeratin 7 is expressed up to 100% within b the invasive and c the non‑muscle infiltrating low‑grade papillary 
urothelial cancer. In contrast to Cytokeratin 7, Vimentin is cytoplasmic expressed within the mesenchymal/stromal component (d, e). An epithelial 
tumor component is only stained in undifferentiated infiltrating carcinomas (data not shown)
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types and tumor subtypes of an urothelial cancer cohort. 
This included co-registration of optical and MSI images, 
thorough quality controls, pre-processing as well as sta-
tistical modelling and peptide identification. Technical 
artifacts such as intensity batch effects and m/z shifts 
could be observed and removed via the ‘MSI qualitycon-
trol’ tool in combination with an adjusted pre-processing. 
Classification of different tissue types as well as different 
urothelial tumor subtypes was achieved with very high 
accuracy.

Despite our best efforts in separating the available 
cohort into training and testing samples, we expect that 
these accuracies are likely too optimistic due to the lim-
ited sample numbers and the experimentally controlled 
setting with little variability: all samples derived from 
one pathological institute, the samples were prepared and 
measured together and similarly analyzed. This study, 
despite its little variability shows the potential of the 
approach, even though lower classification performance 
is expected in broader and more clinically relevant cir-
cumstances, such as multi-site studies on tissue material 
from different institutions.

The application of the Spatial Shrunken Centroids clas-
sification method enabled direct extraction of the m/z 
features that mostly contributed to the classification. A 
few of these m/z features could be assigned to tentative 
identifications, which were mostly in line with the biolog-
ical context. The differential expression of three proteins 
was analyzed by immunohistochemistry.

Histone H2A.X could be confirmed for being more 
expressed in tumor than in stromal tissues. However, in 
contrast to the MSI results, histone H2A.X IHC showed 
a tendency towards a more frequent expression in non-
muscle infiltrating low-grade urothelial cancer than mus-
cle-infiltrating cancer. Assuming m/z 944.53 is correctly 
identified as the peptide AGLQFPVGR of histone H2A, 
it would be present in the majority of histone H2A pro-
teins. Via IHC we only stained histone H2A.X and the 
different abundance of this peptide between non-muscle 
infiltrating and muscle-infiltrating cancer could stem 
from other histone H2A protein family members.

IHC confirmed higher levels of cytokeratine 7 and 
lower levels of vimentin in non-muscle infiltrating low-
grade urothelial cancer compared to muscle-infiltrating 
urothelial carcinoma.

The raster size of 150 µm (with laser spot diameter of 
100  µm) applied in this study did not allow for a more 
detailed investigation of the morphological structures 
and cell types, for example immune cells that are pre-
sent in the desmoplastic stroma and the tumor tissue 
areas. Furthermore, the limited spatial resolution lead to 
relatively small datasets that could have been processed 
on a normal personal computer instead of a large cloud 

infrastructure. However, our findings highlight the gen-
eral applicability of the Galaxy tools and workflows for 
reproducible classification analysis in translational MSI 
experiments. MSI studies with larger raw files due to high 
mass and spatial resolution will especially benefit from 
the huge computational resources that are available on 
the public Galaxy servers as these might be too demand-
ing for computation on local computers.

We have published all Galaxy analysis histories for 
our study to make it fully transparent and reproducible. 
The Galaxy histories contain raw, meta and intermedi-
ate results data, as well as all tool names, tool versions, 
and all set tool parameters. Thus, every detail of the per-
formed analysis can be re-traced and reproduced. In a 
copy of the Galaxy histories, researchers can adjust the 
analysis procedure according to their interest and inspect 
how changing different steps or parameters will change 
the outcome. Even though the Galaxy analysis history 
alone enables full reproducibility, we published all raw 
data including pathological annotations of stained tissues 
in the PRIDE proteomics data repository. This allows re-
use of the data for new urothelial carcinoma studies and 
fosters future bioinformatic investigations since it repre-
sents the first human peptide imaging study that contains 
different disease groups and releases spectra wise patho-
logical annotations for a complete patient cohort. While 
we have used the European Galaxy server for the analy-
sis, studies with stricter data security restrictions could 
perform the analysis via ready to use docker containers 
on their local computing infrastructure [18]. However, 
to increase the trust in published MSI studies and to for-
ward the MSI field it will become increasingly important 
to share raw data and analysis code, which may  require 
to include data sharing into ethic approvals and patient 
consent forms from the beginning on.

Conclusion
We have performed the complete MSI analysis of an 
urothelial cancer cohort in a single platform, the Euro-
pean Galaxy server. Having used an outdated mass 
spectrometer, our study shows the importance of qual-
ity controls and pre-processing adjustment in order to 
detect and remove technical artifacts. Afterwards, we 
were able to classify tumor and stroma tissues as well as 
muscle-infiltrating and non-muscle infiltrating urothe-
lial carcinomas based on their tryptic peptide compo-
sition with high accuracy and biologically explainable 
peptide identifications. Histone H2A was more abun-
dant in tumor compared to stroma tissues, cytokeratine 
7 more abundant and vimentin less abundant in non-
muscle infiltrating than in muscle-infiltrating cancers. 
In addition to these translational and biological find-
ings, we highlight the potential for translational MSI 
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studies and set new levels in terms of reproducibility 
and transparency by sharing all raw data and spectra 
annotations as well as the complete analysis histories. 
We would like to encourage the community to join our 
efforts to lay the foundation for advancing MSI towards 
clinical settings.
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