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CORRESPONDENCE

Glycoproteomics revealed novel 
N-glycosylation biomarkers for early diagnosis 
of lung adenocarcinoma cancers
Kai Fang1, Qin Long1, Zhonghua Liao1, Chaoyu Zhang1 and Zhiqiang Jiang2* 

Abstract 

Circulating biomarkers play important roles in diagnosis of malignant tumors. N-glycosylation is an important post-
translation patter and obviously affect biological behaviors of malignant tumor cells. However, the role of N-glycosyla-
tion sites in early diagnosis of tumors still remains further investigation. In this study, plasma from 20 lung adenocar-
cinoma (LUAD), which were all classified as stage I, as well as 20 normal controls (NL) were labeled and screened by 
mass spectrometry (MS). Total 39 differential N-glycosylation sites were detected in LUAD, 17 were up-regulated and 
22 were down-regulated. In all differential sites, ITGB3-680 showed highest potential in LUAD which showed 99.2% 
AUC, 95.0% SP and 95.0% SN. Besides, APOB-1523 (AUC: 89.0%, SP: 95.0%, SN: 70.0%), APOB-2982 (AUC: 86.8%, SP: 
95.0%, SN: 45.0%) and LPAL2-101 (AUC: 81.1%, SP: 95.0%, SN: 47.4%) also acted as candidate biomarkers in LUAD. Com-
bination analysis was then performed by random forest model, all samples were divided into training group (16 cases) 
and testing group (4 cases) and conducted by feature selection, machine learning, integrated model of classifier and 
model evaluation. And the results indicated that combination of differential sites could reach 100% AUC in both train-
ing and testing group. Taken together, our study revealed multiple N-glycosylation sites which could be applied as 
candidate biomarkers for early diagnosis diagnosis of LUAD.
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Introduction
Lung cancer (LC) is the leading cause of malignant can-
cer-related mortality worldwide. Non-small cell lung 
cancer (NSCLC) and small cell lung cancer (SCLC) are 
two subtypes of lung cancer, in which NSCLC accounts 
for 85% of lung cancer cases [1]. NSCLC can also be 
divided as lung adenocarcinoma (LUAD) (50%), squa-
mous carcinoma (LUSC) (35%) and large cell carcinoma 
(15%) according to histologic differentiation [2]. Despite 
clinical application of advanced therapeutic strategies, 

including target and radiation therapies, the 5-year sur-
vival rate of lung cancer still remain in less than 20% [3], 
which mainly due to late diagnosis [4]. Early diagnosis 
can contribute greatly to survival rate of LC patients, 
which is now completed by low-dose computed tomogra-
phy (CT) and promotes early diagnosis of LC by detect-
ing small malignant nodule [5], but high-false positive 
rate, as well as radiation injury and high financial bur-
den are points of controversy [6]. Circulating biomark-
ers from blood, bronchoalveolar lavage fluid and sputum, 
which consist by proteins, exosomes, miRNA and cir-
culating free DNA (cfDNA), can be helpful in detecting 
early lung cancer due by noninvasive, convenient and 
inexpensive acquisitions [7]. Clinical application bio-
markers in lung cancer include carcinoembryonic anti-
gen (CEA) [8], carbohydrate antigen 19–9 (CA199) [9], 
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carbohydrate antigen 12–5 (CA125) [10], LUSC specific 
marker Cyfra21-1 [11] and SCLC specific marker (NSE) 
[12]. However, these markers is only valuable in advanced 
stages (III + IV) and is poorly sensitive in early stage (I) 
of lung cancer, so selecting and identification of novel 
biomarkers for early diagnosis of lung cancer is very 
important.

Recently studies reveal novel circulating molecules 
which can be used as candidate biomarkers in early 
diagnosis of lung cancer, including circulating tumor 
DNA (ctDNA) [13], exosomes [14], circulating tumor 
cells (CTC) [15] and autoantibodies [16]. Among these 
molecules, exosomes are double-lipid and nanosized 
(30–150  nm diameter) vesicles secreted by almost all 
cell types, which are released into extracellular microen-
vironment [17] and participate in tumor metastases by 
establishing microenvironment via exchange oncogenic 
molecules with nearby and distant cells [18]. Based on 
the characteristics exosomes, the contents in exosomes, 
include proteins, lipids, nucleic acid and metabolites, can 
be conducted as valuablebiomarkers for tumor diagnosis 
[19]. Autoantibodies (AAbs) are tumor immune-related 
markers for malignant tumors, produced by immune 
response against neo-antigens formed by mutated genes 
and aberrantly expressed proteins [20]. Although rapid 
degradation and clearance in serum levels limits their 
clinical application, AAbs assay still act as a promising 
method in distinguishing normal individuals and non-
malignant benign disease.

Besides above tumor-related molecules, glycoprot-
eomic technologies, based on mass spectrometry, has 
now been applied in discovery of biomarker for diagnosis 
of malignant tumors [21]. In this study, we detected gly-
coproteomic levels in 20 LUAD patients, which were all 
classified as stage I. We also conducted 20 healthy con-
trols (NL) to screen novel glycoprotein biomarkers for 
early diagnosis of LAUD.

Materials and methods
Participants and samples
This study contained two groups, LUAD patients were 
from the Department of Respiration and Thoracic Sur-
gery who had not obtained surgery or other treatment 
such as chemical, target or radiation therapy. All clini-
cal characteristics, including age, gender and TNM 
stage were collected by medical records. All healthy 
samples were from the Center of Health Management, 
participants were exclude if their family had any his-
tory of cancer and inflammation. Plasma samples were 
extracted and stored in − 80 °C before applied for detec-
tion. This study was approved by Medical Ethics Com-
mittee and Institutional review board of China National 
Nuclear Corporation 416 Hospital, with all participants 

providing written informed consents. Plasma samples 
were extracted and stored in − 80 °C according to stand-
ard procedures.

Protein extraction and TMT labeling
The supernatants of plasma samples were centrifugated 
at 12000  g at 4  °C for 10  min to remove cellular debris 
and then transferred to a new 1.5 ml tube. Protein con-
centration was then detected by BCA kit in accordance 
to the manufacturer’s manual. All collected plasma sam-
ples were digested by treating with 5 mM dithiothreitol 
(56  °C, 30  min) and alkylated with 11  mM iodoaceta-
mide (Room temperature, 30  min in darkness). TEAB 
(100  mM) was added to dilute samples to urea concen-
tration less than 2 M. For protein digestion, trypsin was 
added at 1:50 mass ration (trypsin-to-protein) overnight 
for first digestion and 1:100 ratio mass for second diges-
tion (4 h).

Strata XC18 SPE column (Phenomenex) and vaccum-
dired was used to desalt digested peptides and then 
reconstituted in 0.5  M TEAB and processed by TMT 
10plex Mass Tag Labeling kit according to manual 
instruction.

HPLC fractionation, affinity enrichment
HILIC enrichment was conducted to N-glycosylaiton 
modification. Tryptic peptides were firstly re-dissolved 
in 200 μL washing buffer (80% CAN, 5% TFA) and then 
washed with washing buffer three times after loading 
into the column. TFA (0.1%), ammonium bicarbonate 
(50 mM) and CAN (50%) were added to elute glycopep-
tides two times, which were then dried in Speedvac and 
re-dissovled with 50 μL ammonium bicarbonate solution 
(50 mM). The digestion was completed at 37 °C overnight 
by adding 2 μL PNGase F glycodidase. Finally all de-gly-
copeptides were desalted by C18 Zip Tips according to 
manual instruction and dried for further MS analysis.

LC–MS/MS analysis
ALL tryptic peptides were dissolved in solvent A (0.1% 
formic acid, 2% acetonitrile in water) and loaded into 
reverse-phase analytical column, and then separated by 
solvent B (0.1% formic acid in 90% acetonitrile) with gra-
dient 4%-20% for 38 min, 20%-32% within 16 min, climb-
ing to 80% in 3 min, holding in 80% for last 3 min, all at 
a constant flowrate of 500nL/min on an EASY-nLC 1200 
UPLC system (Thermo Fisher Scientific). Q ExactiveTM 
HF-X (Thermo Fisher Scientific) with a nano-electrospray 
ion source was used to analyze all separated peptides, 
with 2.1 kV electrospray voltage. The full MS scan resolu-
tion was set to 120,000 for a scan range of 350–1400 m/z 
and then up to 20 most abundant precursors were then 
selected for further MS/MS analyses with 15  s dynamic 
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exclusion. The HCD fragmentation was processed in 
normalized collision energy (NCE) (28%) and detected 
in Orbitrap (resolution: 30,000) with 100 m/z fixed first 
mass. Automatic gain control (AGC) target was set at 
1E5, with an intensity threshold of 1E5 and a maximum 
injection time of 100 ms. The TMT LC–MS/MS analysis 
in our research was supported by PTM BioLabs.

Database search
Raw data form LC–MS/MS was processed by Maxquant 
search engine (v.1.5.2.8). When searching the library, 
variable modification adds oxidation of methionine, 
acetylation of the N-terminal of the protein, deamida-
tion (NQ), and deamidation of asparagine (18O), by 
detecting the mass deviation on asparagine to confirm 
whether N-glycosylation occurred. Human uniprot data-
base, together with reverse decoy database were used 
to search tandem mass spectra. The mass tolerance for 
precursor ions was 20  ppm and 5  ppm in first research 
and main search respectively, while the mass tolerance 
for fragment ions was set as 0.02 Da. Carbamidomethyl 
on Cys was specified as fixed and acetylation modifica-
tion, and the oxidation on Met were specified as variable 
modifications. The resulting MS/MS data were processed 
using Proteome Discoverer (v2.4.1.15). Tandem mass 
spectra were searched against the Uniprot_Homo_sapi-
ens_9606_20210721 database (78,120 entries) concat-
enated with reverse decoy database. Trypsin (Full) was 
specified as cleavage enzyme allowing up to 2 missing 
cleavages; the minimum length of the peptide segment 
is set to 6 amino acid residues; the maximum number of 
peptide modifications is set to 3; the mass tolerance for 
precursor ions was set as 20  ppm, and the mass toler-
ance for fragment ions was set as 0.02  Da. Carbamido-
methyl (C), TMT6plex (peptide N-Terminus), TMT6plex 
(K) were set as fixed modifications, and Acetyl (protein 
N-Terminus), Oxidation (M), Deamidated: 18O (N) were 
set as variable modifications. The quantitative method 
was set to TMT-11plex, and the FDR of protein identifi-
cation and PSM identification were both set to 1%.

GO and domain annotation
UniProt-GOA database (  http:// www. ebi. ac. uk/ GOA/) 
was used in Gene Ontology (GO) annotation proteome 
and identified protein ID was converted and mapped to 
UniProt ID and GO ID. Based on protein sequence not 
annotated by UniProt-GOA database, the InterProScan 
soft was applied to annotated protein’s GO functional. 
All proteins were defined by Gene Ontology annotation 
based on three categories: biological process, cellular 
component and molecular function.  Proteins domains 
annotated by InterProScan were identified InterPro 

domain database based on protein sequence alignment 
method.

KEGG pathway annotation and subcellular localization
Kyoto Encyclopedia of Genes and Genomes (KEGG) was 
a networks which connected all known molecular inter-
action, including genes and proteins, pathways and com-
plexes, which also contained biochemical compounds 
and reactions. The contents of KEGG pathway included 
metabolism, genetic process information, cellular pro-
cesses and drug development. KEGG online service tools 
KAAs was firstly introduced to annotate the protein 
description, and then another online service tools KEGG 
mapper was conducted to mapping the annotation 
results. Wolfpsort was an updated version of PSORT/
PSORT II for the prediction of eukaryotic sequences, 
which was introduced in this study to predict subcellular 
localization. CELLO was conducted to subcellular locali-
zation prediction.

Motif analysis
The model of sequences was identified by Soft MoMo 
(motif-x algorithm), which constituted with amino acids 
in specific positions of modify-21-mers (10 amino acids 
upstream and downstream of the site) in all protein 
sequences. And all the database protein sequences were 
used as background database parameter. Minimum num-
ber of occurrences was set to 20 and emulate original 
motif-x was ticked, and other parameters with default.

Functional of gene ontology enrichment
All identified proteins was separated into three catego-
ries by GO annotation: biological process, cellular com-
partment and molecular function. For each category, the 
enrichment of the differentially modified protein against 
all identified proteins and pathway enrichment were both 
identified by two-tailed Fisher’s exact test. These path-
ways were classified into hierarchical categories accord-
ing to KEGG website. For all analysis, p-value < 0.05 was 
considered significant.

Enrichment‑based clustering
TO further hierarchical cluster based on differen-
tially modified protein functional classification (such 
as: GO, Domain, Pathway, Complex), we collected all 
available categories after enrichment along with P val-
ues and filtered for those categories which were at least 
enriched in one of the clusters with P value < 0.05. This 
filtered P value matrix was transformed by the function 
x =  − log10. All x values were z-transformed for each 
functional category and z scores were clustered by one-
way hierarchical clusteringin Genesis and the cluster 

http://www.ebi.ac.uk/GOA/
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membership were visualized by “heatmap.2” function 
from the “gplots” R-package.

Protein‑proteins interaction network
All differentiated proteins were searched in STRING 
database (version 10.0) to investigate protein–pro-
tein interactions. Only interactions between the pro-
teins belonging to the searched data set were selected, 
STRING defines a metric called “confidence score” to 
define interaction confidence and all interactions had 
a confidence score ≥ 0.7 (high confidence). Interac-
tion network form STRING was visualized in R package 
“networkD3”.

Results
Study design and clinical characterizations of all patients
This study contained two groups, including 20 LUAD 
patients and 20 healthy controls (NL). The average age 
was 57.8 ± 10.8 and 45.1 ± 11.4 in LUAD and NL groups, 
and LUAD included 6 male and 14 female, while NL con-
tained 7 male and 13 female. All LUAD patients were 
classified as stage I according to 7th version, and 7 had 
smoke history while 13 were never smoking. All clinical 
features of all participants were listed in Table 1.

To explore N-glycoprotein sites for lung cancer diagno-
sis, plasma were obtained from LUAD and NL controls 
and were extracted and labelled. After fractionation and 
enrichment, LC–MS/MS was performed to investigate 
the N-glycoprotein levels in all samples. The differen-
tial N-glycoprotein levels between LUAD and NL were 
analyzed based on databases. And the candidate N-gly-
coprotein sites were combined to study the role of novel 
biomarkers for future lung cancer diagnosis. The study 
procedures were listed in Fig. 1.

Characteristics of the identified N‑glycoproteins
Next, we performed enriched peptides and detected 
by LC–MS/MS to identify N-glycoproteins in obtained 
plasma samples. In comparison to NL samples, we 
obtained total 383,675 spectrums in LUAD patients and 
18,566 matched spectrums were identified based on pro-
tein datasets (Additional file 1: Table S1). We then iden-
tified total 4385 peptides in matched spectrums. In all 
peptides, 1399 were belongs to modified peptides which 
contained 502 identified sites. In LUAD samples, 478 
sites were quantified which were identified from 275 pro-
teins (Fig. 2A).

In this study we identified total 478 sites in 263 pro-
teins in LUAD patients. The number of N-glycosylated 
sites assigned to all proteins ranged from 1 to 11 with 
average degree of glycosylation was 2.5. More than half 
of glycoproteins (270/478, 57.1%) carried only a single 
N-glycoprotein site, 110 (23.6%) of them harbored double 

N-glycoprotein sites (Fig. 2B, C). Triple and four N-gly-
coprotein sites were 41 (9.1%) and 27 (6.2%), respectively. 
And the rest 17 (4%) contained five (8, 2.5%), eight (1, 
0.4%), nine (3, 0.7%) and eleven (1, 0.4%) sites (Fig.  2B, 
C). And our results also indicated the overlap numbers 
in all samples in both protein and N-glycoprotein sites 
(Fig.  2D, E). In summary, multiple proteins and N-gly-
cosylation sites were identified in LUAD patients, which 
could be conducted to further analysis to identify candi-
date biomarkers for future clinical application.

Disease‑associated changes in N‑glycopeptide abundance 
in LUAD
In comparison to NL samples, 39 differential N-glycosyla-
tion sites were obtained in LUAD. In all differential sites, 
17 increased in LUAD patients, such as APOB-2982, 
SERPINC1-224 and APOB-1523, while 22 decreased in 
lung cancer samples, including ITGB3-125 and VWF-
235 (Fig. 3A). We analyzed the cellular distribution of the 
differential proteins, and the result indicated 24 proteins 
were extracellular, 3 proteins were endoplasmic reticu-
lum, while the cytoplasm, cytoskeletio, mitochondria and 
plasma membrane contained 1 protein (Fig. 3B).

The neighborhood residues of glycosylated aspara-
gines could determine the specificity of LUAD. MoMo 
was conducted to obtain the characteristic sequence of 
modified sites and their enrichment statistics. As shown 
in Fig.  3C, 2 conserved amino acids flanking the glyco-
sylated asparagine residues (from −  10 to + 10) were 
defined. These motifs included N-x-T-*-Y and N-x-S, 
where x represented any amino acid except proline and 
the asterisk denoted a random amino acid. Based on 
analysis of hierarchical clusters, threonine and serine dis-
played the highest probability at the position + 2, while 
the frequency of a proline residue in the proximity was 
markedly underrepresented (Fig.  3D). Taken together, 
our results suggested a preference motif exposed to the 
surface of glycoproteins.

Analysis and annotation of differentially N‑glycosylated 
proteins in LUAD
To elucidate the potential functions of those quantifiable 
proteins in LUAD samples, we analyzed the quantifiable 
proteome data set for three enrichment gene ontology 
(GO) categories: molecular function, cellular compart-
ment and biological process. Based on accumulative nor-
mal distribution, we divided all pathways into 4 quantiles: 
Q1 (< 0.769 fold change), Q2 (0.769–0.833 fold change), 
Q3 (1.2–1.3 fold change) and Q4 (> 1.3 fold change). In 
the biological process category, the significant increased 
pathways enriched in cell migration process such as tis-
sue remodeling, cell growth, cell–matrix adhesion and 
actin cytoskeleton organization (Q1), and also contained 
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immune-related regulation including leuckocyte chemo-
taxis, lymphocyte migration, cytokine stimulus and T 
cell migration (Q2). In Q3 and Q4 analysis, we also found 
that activated pathways in LUAD samples aggregated in 
innate immune response, endocytosis (Q3) and in meta-
bolic transport process including protein, lipid, sterol 

and cholesterol (Q4) (Fig. 4A). As to cellular component 
analysis, the results revealed that assembled compo-
nents in LUAD patients were intrinsic, integral, vesicle, 
cytoplasmic and organelle membrane (Q1), trans-Golgi 
network, vesicle transport and secretory granule lumen 
(Q2), metabolic components (protein-lipid complex, 

Table 1 The clinical features of all participates in this study

Number Sex Age Smoke history TNM Stage

LA1 Female 75 No T1bN0M0 IA2

LA2 Male 61 Yes T1bN0M0 IA2

LA3 Female 37 No T1aN0M0 IA1

LA4 Male 63 Yes T1cN0M0 IA3

LA5 Female 62 No T1bN0M0 IA2

LA6 Male 61 Yes T1c N0M0 IA3

LA7 Female 57 No T2aN0M0 IB

LA8 Female 51 No T1bN0M0 IA2

LA9 Male 51 No T1bN0M0 IA2

LA10 Female 46 No T1b/2aN0M0 IA2/

LA11 Female 49 No T1cN0M0 IA3

LA12 Female 42 No T1bN0M0 IA2

LA13 Female 60 No T1aN0M0 IA1

LA14 Female 57 No T2aN0M0 IB

LA15 Male 70 Yes T1bN0M0 IA2

LA16 Male 82 No T2aN0M0 IB

LA17 Female 65 No T1bN0M0 IA2

LA18 Female 59 No T1bN0M0 IA2

LA19 Female 63 No T2aN0M0 IB

LA20 Female 45 No PT1bN0M0 IA2

Number Sex Age

NL1 Female 31

NL2 Female 71

NL3 Female 40

NL4 Female 41

NL5 Female 41

NL6 Female 40

NL7 Male 41

NL8 Male 50

NL9 Female 29

NL10 Female 58

NL11 Male 31

NL12 Female 49

NL13 Female 48

NL14 Male 45

NL15 Male 51

NL16 Male 49

NL17 Female 38

NL18 Female 71

NL19 Female 47

NL20 Male 31
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plasma lipoprotein particle and lipoprotein particles) 
(Q3) and endocytic vesicles (Q4) (Fig.  4B). Finally we 
analyzed molecular function pathways in LUAD samples, 
we observed enrichment focused on binding activity, 
including protease, fibronectin, carbohydrate and sulfur 
compound (Q1), enzyme, cytokine and growth factor 

(Q2), as well as transport activity (Q3) and lipoprotein 
receptor binding (Q4) (Fig. 4C). We then analyzed KEGG 
pathways in LUAD samples and found that the enrich-
ment contained neutrophil extracellular formation, plate-
let activation (Q1) and amoebiasis (Q2) (Fig. 4D).

Fig. 1 Workflow of N-glycosylation analysis in LUAD patients and NL controls. Trypsin was added into all samples for protein digestion and then 
processed by TMT kit/iTRAQ kit. High pH reverse-phase HPLC was performed to fractionate tryptic peptides and then dissolved in NETN buffer for 
enrichment. The peptides were then subjected to tandem mass spectrometry (LC–MS/MS) in Q ExactiveTM Plus. A data-dependent procedure was 
then conducted to peptides and alternated between one MS scan followed by 20 LC–MS/MS scans with 15.0 s dynamic exclusion

Fig. 2 Characteristics of identified N-glycoproteins. A Total number of identified N-glycosylation proteins. B The number of modification sites per 
protein. C Pie chart showed the number and proportions of single and multiple N-glycosylated sites in LUAD. D Overlap numbers of glycoproteins 
in LUAD samples. E Overlap numbers of glycosylation sites in LUAD samples
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Finally STRING protein–protein interaction (PPI) 
dataset was performed to analyze the protein–protein 
interactions in identified proteins. The results indicated 
that APOB, SERPINC1 and CLU were the core nodes 
in interaction network, which interacted with multiple 
proteins such as IGF2R, C8A, HPX, HRG and ADAM10. 
FN1 and SERPING1 also acted as central connection 
nodes, which interacted with SERPINA5, ITGB3, VWF 
and F5 (Fig.  4E). Taken together, our results indicated 
that by TMT labeling and LC–MS/MS sequencing, we 
identified multiple differential proteins and N-glycosyla-
tion sites in LUAD patients, which harbored multiple 
pathways in tumor-related abnormal metabolism and 
protein transport.

The role of N‑glycosylation sites in diagnosis of LUAD
To further explore the diagnostic accuracy of candidate 
biomarkers in LUAD, we performed ROC analysis to 
define the sensitivity (SN) and specificity (SP) of iden-
tified N-glycosylation sites. The results suggested that 
multiple N-glycosylation sites in proteins harbored valu-
able roles in lung cancer diagnosis. The tope 4 proteins 
were ITGB3-680, APOB-1523, APOB-2982 and LPAL2-
101, which all showed AUC (area under curve) > 80.0% 
(Fig.  5A). The most important site was ITGB3-680, the 

AUC was 99.2%, SN (sensitivity) and SP (specificity) were 
both 95.0% in compared with NL group. In APOB-1523 
analysis, the AUC was 89.0%, SN and SP were 70.0% and 
95/0%, respectively. In APOB-2982 analysis, AUC was 
86.8%, SN was 45.0% and SP was 95.0% when compared 
with NL group. The AUC in LPAL2-101 analysis was 
81.1%, while SN was 47.4%, SP was 95.0% (Fig. 5A).

Besides top 4 proteins, we also analyzed other candi-
date proteins. We found that AUC of CLU-291 was 78.5%, 
SN was 50.0% and SP was 95.0%. And the AUC, SN, SP of 
VWF-2357 were 76.8%, 50.0% and 95.0%, respectively. In 
C8A-437 analysis, the AUC was 76.5%, SN was 45.0%, SP 
was 95.0%. In CD109-247 analysis, we obtained AUC was 
76.5%, SN was 25.0% and SP was 95.0% (Fig. 5B).

Finally we investigate ECM1-444, CFH-882, VNN1-
283 and AFM-33. The analysis results indicated that in 
ECM1-444, the AUC was 75.6%, SN was 30.0% and SP 
was 95.0%. In CFH-882, the AUC was 75.5%, SN was 
25.0%, SP was 95.0%. In VNN1-283 analysis, the AUC 
was 75.5%, SN was 60.0% and SP was 90.0%. In AFM-33 
analysis, the result showed that AUC was 75.3%, while 
SN and SP were 60.0% and 95.0%, respectively (Fig. 5C).

In summary, our study revealed multiple N-glycosyla-
tion sites harbored highly potential diagnostic value in 
LUAD diagnosis.

Fig. 3 Disease-associated variations in N-glycopeptide abundance in LAUD. A Volcano revealed increased and decreased N-glycosylation sites 
in LUAD and NL samples. B Classification of identified N-glycosylation proteins based on subcellular loction. C Sequence motifs located nearby 
the target asparagine in enriched glycosylation sites. D Heatmap showing the relative frequency of amino acids in the proximity of asparaine 
(enrichment, red; depletion, green)
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Fig. 4 Annotation of differential N-glycosylated proteins in LUAD samples. A–D. Functional enrichment-based clustering analysis for quantified 
glycoproteome. A biological process analysis, B cellular component, C molecular function analysis, D KEGG pathway analysis. E PPI network analysis. 
Each node represents an N-glycoprotein and each edge represents the interaction between proteins
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Fig. 5 The concentration and ROC analysis of differential N-glycosylation sites identified in LUAD patients. A The concentration and ROC analysis of 
N-glycosylation sites with AUC > 80.0%. B, C The concentration and ROC analysis of N-glycosylation sites with AUC > 70.0%. **p < 0.01, ***p < 0.001
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Combination analysis of novel N‑glycosylation sites 
by machine learning model
IN this part, we introduced machine learning model to 
test the diagnosis efficiency of candidate biomarkers 
in lung cancer. We divided all participants into training 
set (establish model and adjust parameters, 16 cases) 
and test set (evaluate the model, 4 cases). By combining 
feature selection, machine learning algorithm, classifier 
integration method and dataset validation, random for-
est model was conducted to determine whether the prot-
eomic profile had cancer-specific features for lung cancer 
diagnosis (Fig. 6A). Due to small sample sizes of two data 
sets, 2/3 individuals in the training set were selected to 
grow decision trees by boostrapping and the remaining 
participants were used as out of bag samples for cross-
validation importance. In feature selection, each sam-
ple was represented by feature vector, which contained 
24 expression features and each expression feature has 

different ability to distinguish different types of samples. 
Univariate feature analysis was introduced to quantify 
the ability of expression features in distinguishing dif-
ferent samples and we could calculate the correlation 
between each feature and sample types by variance test. 
Based on this method, the feature scores and p value of 
candidate molecules revealed the top 15 molecules in 
candidate N-glycosylation sites, including ITGB3-680, 
APOB-2982, CLU-291, ECM1-444, C8A-437, VNN1-
283, LPAL2-101, APOB-1523, BTD-56, AFM-33, APOB-
3411, AFM-402, CFH-882, CRISP3-270, SERPINA5-262, 
IGHG4-177 and SERPING1-238, which were performed 
for model construction (Fig. 6B). Next, we analyzed the 
Pearson correlation coefficient to understand the linear 
correlation of top 5 proteins (ITGB3-680, APOB-2982, 
CLU-291, ECM1-444 and C8A-437), the results indicated 
that ITGB3-680, ECM1-444 and C8A-437 correlated 
closely (0.459 and 0.368) while APOB-2982 and CLU-291 

Fig. 6 Combination analysis of candidate biomarkers by machine learning. A Analysis schema of machine learning. B Feature score of candidate 
N-glycosylation sites identified by feature selection. C Pearson correlation coefficient in Top 5 N-glycosylation sites in feature score. D AUC in 
training (16 cases) and test set (4 cases) by plotting the true positive rate against the false positive rate under different cut-off values
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had correlation (0.357) (Fig. 6C). Finally machine learn-
ing model was established to evaluate the role of candi-
date biomarkers in lung cancer diagnosis. In this study 
we used logistic regression, support vector machine and 
random forest as base classifier to construct voting clas-
sifier. To evaluate the differences between prediction and 
actual category, four calculation accuracy index, includ-
ing sensitivity, specificity, Mattthews’ correlation coeffi-
cient and AUC (area under curve) were introduced in this 
model. In all expression features, the optimal expression 
feature subset in current data set was selected to obtain 
optimal prediction accuracy by incremental feature selec-
tion (IFS). The AUC curves in training and test set were 
obtained by plotting the true positive rate against the 
false positive rate under different cut-off values, and the 
result indicated that AUC reached 100% in both training 
and test sets (Fig. 6D). In summary, the machine learning 
model revealed that combination of N-glycosylation sites 
had important application in lung cancer diagnosis.

Discussion
Lack of effectively early diagnostic strategies is the main 
reason that most lung cancer patients are diagnosed 
at advanced stages. Thus, it is important to screen and 
identify valuable biomarkers for early diagnosis of lung 
cancer. Nowadays, multiple novel circulating biomarkers 
had valuable potential in lung cancer diagnosis, includ-
ing circulating tumor DNA (ctDNA), circulating tumor 
cells, auto-antibodies and exosomes. N-linked glycosyla-
tion is a post-translational modifications in cancer pro-
gression, which was important in numerous regulations 
in disease pathogenesis, protein folding, receptor-ligand 
interactions and tumor-specific immune responses [22]. 
Increased evidences confirmed the importance of N-gly-
cosylation in molecular structure formation and bio-
logical networks in human cells. About 50% of human 
proteins, either secreting or membrane proteins, harbor 
N-linked glycosylation patterns, which affect various 
aspects of biological behaviors in malignant tumor cells 
[23]. Based on the fact that altered glycosylation levels are 
hallmarks of tumor progression, circulating tumor-spe-
cific glycoproteins can act as candidate novel biomarkers 
in tumor diagnosis [24]. In small cell lung cancer (SCLC) 
study, label-free proteomics and multiple reaction moni-
toring-mass spectrometry were conducted to screen sera 
from 54 SCLC patients and 29 health controls, the assay 
revealed four fucosylated proteins APCS, C9, SERPINA4 
and PON1, APCS showed 87.5% AUC and PON1 exhib-
ited 91% AUC in extensive stage of SCLC [25]. In another 
research, fucosylated glycoproteins carbohydrate anti-
gen 19–1 and a-fetoprotein (AFP)-L3 exhibited potential 
diagnosis role in sera from pancreatic and liver cancer 
patients [26]. However, the role of N-glycosylation sites 

in early diagnosis of malignant tumor still needs exten-
sive investigation.

In this study, we enrolled 40 clinical plasma samples, 
including 20 LUAD and 20 NL to screening tumor spe-
cific N-glycosylation sites. TMT-labeling and LC–MS/
MS were conducted to investigate plasma protein profiles 
and identify differentiation proteins, as well as differen-
tial N-glycosylation sites between LUAD and NL. Our 
detection uncovered total 31 differential proteins and 39 
differential N-glycosylation sites in LUAD samples, 17 
were up-regulated and 22 were down-regulated. Exten-
sive analysis revealed 39 sites harbored potential value 
in future clinical application. Among all candidate mol-
ecules, the most important site was ITGB3-680, which 
showed highest AUC (99.2%), SN (95.0%) and SP (95.0%) 
in all proteins. Besides, APOB-1523 (AUC: 89.0%), 
APOB-2982 (AUC: 86.8%) and LPAL2-101 (AUC: 81.1%) 
were also important in diagnosis of lung cancer. Due to 
limitation of single molecule in tumor diagnosis, we then 
conducted machine learning model to evaluate the com-
bination of candidate N-glycosylation sites. We divided 
all samples into training and testing groups and the result 
indicated that both groups harbored 100% AUC, which 
suggested that these N-glycosylation sites could act as 
potential biomarkers in application of early diagnosis of 
LUAD.

In all proteins identified in our study, ITGB3 belonged 
to integrin family, which enrolled in stress resistance and 
promoted metastases of triple-negative breast cancer, 
and mechanism analysis indicated that ITGB3 played 
a central role in endocytosis of extracellular vesicles by 
interacting and activating focal adhesion kinase (FAK) 
[27]. APOB was the main low-density lipoprotein and 
related closely to poor prognosis of multiple malignant 
tumors, five independent single nucleotide polymor-
phism (SNPs) sites significantly associated with NSCLC 
survival in both discovery and validation datasets [28]. 
LPAL2 was lipoprotein (A) like 2, which was a pseudo-
gene and contributed to tumor metastasis, lncRNA of 
LPAL2 could be applied as biomarkers in malignant chol-
angiocytes [29]. CLU (clusterin) was involved in tumor 
progression by promoting C-Myc transcriptional repres-
sion and immune response, the microarray method and 
weighted expression profile revealed that decrease CLU 
could predict the poor survival of lung cancer [30]. ECM1 
(extracellular matrix protein 1) was glycoprotein and pro-
moted tumor progression by regulating variety of biolog-
ical processes such as cell mineralization, proliferation, 
migration and angiogenesis, the study in gastric cancer 
revealed that ECM1 could enhance glucose metabolism 
by inducing FAK/SOX2 signaling pathway [31]. CD109 
was a glycosyl phosphatidylinositol anchored protein 
and enhanced expression of CD109 could be found in 
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multiple tumors including lung cancer, glioblastomas, 
melanomas and breast carcinoma [32]. CFH was a com-
plement factor and high mRNA level related closely to 
progression of cutaneous squamous cell carcinoma [33]. 
In our study, N-glycosylation of these proteins were all 
important in diagnosis of lung adenocarcinoma.

However, our study also had several shortcomings. 
Firstly, this was a small cohort which contained only 40 par-
ticipants (20 tumor patients and 20 normal controls). The 
second was that we only enrolled LUAD patients and NL 
controls. Thirdly, our study lacked of molecular mechanism 
of whether N-glycosylation sites could affect the biologi-
cal functions of lung cancer. In our next study, we should 
contain benign lung diseases, including harmartoma, atypi-
cal hyperplasia, inflammatory pseudotumor, inflammatory 
nodules and infections, as well as lung squamous carci-
noma (LUSC) and enlarged participants (at least 150 indi-
viduals in each group). Moreover, extensive research also 
needed to investigate the regulation mechanism of N-gly-
cosylation sites in lung cancer biological functions.

In summary, our study provided a primary investigation 
to screening N-glycosylation biomarkers for early diagno-
sis of lung cancer. Our study indicated that based on prot-
eomic profiling, N-glycosylation sites derived from plasma 
could be applied as non-invasive biomarkers for early diag-
nosis of lung cancer. The combination of these N-glycosyla-
tion could significantly increase specificity and sensitivity 
in diagnosis of lung cancer.

Abbreviations
NSCLC: Non-small cell lung cancer; SCLC: Small cell lung cancer; LUAD: Lung 
adenocarcinoma; LUSC: Lung squamous carcinoma; NL: Normal healthy contrl; 
MS: Mass spectrometry; CT: Computed tomography; CEA: Carcinoembryonic 
antigen; CA125: Carbohydrate antigen 12-5; CA19-9: Carbohydrate antigen 
19-9; NSE: Neuron specific enolase; CTC : Circulating tumor cells; AAbs: Autoan-
tibodies; KEGG: Kyoto Encyclopedia of Genes and Genomes; ITGB3: Integrin 
subunit beta 3; APOB: Apolipoprotein B; LPAL2: Lipoprotein (A) like 2; CLU: 
Clusterin; ECM1: Extracellular matrix protein 1; CFH: Complement factor H.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12014- 022- 09376-8.

Additional file 1: Table S1. MS identified information in this study.

Acknowledgements
We thanks medical record department for providing information of patients

Author contributions
ZQ designed the manuscript, KF performed data analysis and wrote the 
manuscript, QL and ZL collected samples and help to complete manuscript, 
ZL and CZ conceived of the study and participated in designation. All authors 
read and approved the final manuscript.

Funding
None.

Availability of data and materials
Data are available via ProteomeXchange with identifier PXD036198.

Declarations

Ethical approval and consent to participate
Ethical approval for this study (No.20210128) was provided by the Ethics 
Committee on Biomedical research, China National Nuclear Corporation 416 
Hospital.

Competing interests
The authors declare no competing interests.

Author details
1 Department of Emergency, The Second Affiliated Hospital of Chengdu 
Medical College, China National Nuclear Corporation 416 Hospital, 
Chengdu 610051, China. 2 Department of Thyroid Surgery, The Second Affili-
ated Hospital of Chengdu Medical College, China National Nuclear Corpora-
tion 416 Hospital, Chengdu 610051, People’s Republic of China. 

Received: 23 August 2022   Accepted: 15 October 2022

References
 1. Goldstraw P, Crowley J, Chansky K, et al. The IASLC lung cancer staging 

project: proposals for the revision of the TNM stage groupings in the 
forthcoming (seven) edition of the TNM classification of malignant 
tumors. J Thorac Oncol. 2007;2:706–14.

 2. Smith RA, Andrews KS, Brooks D, et al. Cancer screening in the United 
States, 2017: A review of current American Cancer Society guidelines and 
current issues in cancer screening. CA Cancer J Clin. 2017;67:100–21.

 3. Kinsinger LS, Anderson C, Kim J, et al. Implementation of lung cancer 
screening in the Veterans health administration. JAMA Intern Med. 
2017;177:399–406.

 4. Heschke CI, Yankelevitz DF, Libby DM, et al. Survival of patients with stage 
I lung cancer detected on CT screening. N Eng J Med. 2006;355:1763–71.

 5. Alberle DR, Adams AM, Berg CD, et al. Reduced lung-cancer mortal-
ity with low-dose computed tomographic screening. N Eng J Med. 
2011;365:395–409.

 6. Mulshine JL, D’Amico TA. Issues with implementing a high-quality lung 
cancer screening program. CA Cancer J Clin. 2014;64:351–63.

 7. Patz JE, Campa MJ, Gottlin EB, et al. Panel of serum biomarkers for the 
diagnosis of lung cancer. J Clin Oncol. 2007;25:5578–83.

 8. Grunnet M, Sorensen JB. Carcinoembryonic antigen (CEA) as tumor 
marker in lung cancer. Lung Cancer. 2012;76:138–43.

 9. Kosacka M, Jankowska R. Comparison of cytokeratin 19 expression in 
tumor tissue and serum CYFRA 21–1 levels in non-small cell lung cancer. 
Pol Arch Med Wewn. 2009;119:33–7.

 10. Zhu Y, Yang Y, Wang Y. Role of serum CA125 and CA199 concentration in 
diagnosis and prognosis evaluation of lung cancer patients. Int J Clin Exp 
Pathol. 2016;9:5388–96.

 11. Zhang Li, Liu D, Li L, et al. The importance of circulating CYFRA21-1 in 
metastasis diagnosis and prognostic value compared with carcinoembry-
onic antigen and neuron-specific enolase in lung cancer patients. BMC 
Cancer. 2017;17:96.

 12. Chu XY, Hou XB, Song WA, et al. Diagnostic values of SCC, CEA, CYFRA21-1 
and NSE for lung cancer in patients with suspicious pulmonary masses: a 
single center analysis. Cancer Biol Ther. 2011;11:995–1000.

 13. Leighl NB, Page RD, Raymond VM, et al. Clinical utility of comprehensive 
cell-free DNA analysis to identify genomic biomarkers in patients with 
newly diagnosed metastatic non-small cell lung cancer. Clin Cancer Res. 
2019;25:4691–700.

 14. Van der Pol E, Boing AN, Hamison P, et al. Classification, function, and clin-
ical relevance of extracellular vesicles. Pharmacol Rev. 2012;64:676–705.

 15. Marquette C-H, Boutros J, Benzaquen J, et al. Circulating tumour cells as 
a potential biomarker for lung cancer screening: a prospective cohort 
study. Lancet Respiratory medicine. 2020;8:709–16.

https://doi.org/10.1186/s12014-022-09376-8
https://doi.org/10.1186/s12014-022-09376-8


Page 13 of 13Fang et al. Clinical Proteomics           (2022) 19:43  

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 16. Tan HT, Low J, Lim SG, et al. Serum autoantibodies as biomarkers for early 
cancer detection. FEBS J. 2009;276:6880–904.

 17. Thery C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and 
function. Nat Rev Immunol. 2002;2:569–79.

 18. Li AC, Zhang TB, Zheng M, et al. Exosomal proteins as potential markers 
of tumor diagnosis. J Hematol Oncol. 2017;10:175.

 19. Li WH, Li CY, Zhou T, et al. Role of exosomal proteins in cancer diagnosis. 
Mol Cancer. 2017;16:145.

 20. Lacombe J, Mangé A, Jarlier M, et al. Identification and validation of new 
autoantibodies for the diagnosis of DCIS and node negative early-stage 
breast cancers. Int J Cancer. 2013;132:1105–13.

 21. Heo SH, Lee SJ, Ryoo HM, et al. Identification of putative serum glycopro-
tein biomarkers for human lung adenocarcinoma by multilectin affinity 
chromatography and LC-MS/MS. Proteomics. 2007;7:4292–302.

 22. Wang CQ, Gao WJ, Yan S, et al. N-glycome and N-glycoproteome of 
a hematophagous parasitic nematode Haemonchus. Comput Struct 
Biotech J. 2021;19:2486–96.

 23. Miyoshi E, Moriwaki K, Nakagawa T. Biological function of fucosylation in 
cancer biology. J Biochem. 2008;143:725–9.

 24. Kobata A, Amano J. Altered glycosylation of proteins produced by 
malignant cells, and application for the diagnosis and immunotherapy of 
tumors. Immunol Cell Biol. 2005;83:429–39.

 25. Ahn JM, Sung HJ, Yoon YH, et al. Integrated glycoproteomics demon-
strates fucosylated serum paraoxonase 1 alterations in small cell lung 
cancer. Mol Cell Proteom. 2014;13:30–48.

 26. Aoyagi Y, Saitoh A, Suzuki Y, et al. Fucosylation index of a-fetoprotein, 
a possible aid in the early recognition of hepatocellular carcinoma in 
patients with cirrhosis. Hepatology. 1993;17:50–2.

 27. Fuentes P, Sese M, Guijarro PJ, et al. ITGB3-mediated uptake of small extra-
cellular vesicles facilitates intercellular communication in breast cancer 
cell. Nat Commun. 2020;11:4261.

 28. Deng W, Liu HL, Luo S, et al. APOB genotypes and CDH13 haplotypes in 
the cholesterol-related pathway genes predict non-small cell lung cancer 
survival. Cancer Epide Bio Prev. 2020;9:1204–13.

 29. Han BW, Ye H, Wei PP, et al. Global identification and characterization of 
lncRNAs that control inflammation in malignant cholangiocytes. BMC 
Genomics. 2018;19:735.

 30. Wu X, Wang LL, Feng F, et al. Weighted gene expression profiles identify 
diagnostic and prognostic genes for lung adenocarcinoma and squa-
mous cell carcinoma. J Int Med Res. 2019;48:1–12.

 31. Gan L, Meng J, Xu M, et al. Extracellular matrix protein 1 promotes 
cell metastasis and glucose metabolism by inducing integrin beta4/
FAK/SOX2/HIF-1a signaling pathway in gastric cancer. Oncogene. 
2018;37:744–55.

 32. Lee KY, Shueng PW, Chou CM, et al. Elevation of CD109 promotes metas-
tasis and drug resistance in lung cancer via activation of EGFR-AKT-mTOR 
signaling. Cancer Sci. 2020;111:1652–62.

 33. Riihila PM, Nissinen LM, Ala-aho R, et al. Complement factor H: a bio-
marker for progression of cutaneous squamous cell carcinoma. J Invest 
Dermat. 2014;134:498–506.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Glycoproteomics revealed novel N-glycosylation biomarkers for early diagnosis of lung adenocarcinoma cancers
	Abstract 
	Introduction
	Materials and methods
	Participants and samples
	Protein extraction and TMT labeling
	HPLC fractionation, affinity enrichment
	LC–MSMS analysis
	Database search
	GO and domain annotation
	KEGG pathway annotation and subcellular localization
	Motif analysis
	Functional of gene ontology enrichment
	Enrichment-based clustering
	Protein-proteins interaction network

	Results
	Study design and clinical characterizations of all patients
	Characteristics of the identified N-glycoproteins
	Disease-associated changes in N-glycopeptide abundance in LUAD
	Analysis and annotation of differentially N-glycosylated proteins in LUAD
	The role of N-glycosylation sites in diagnosis of LUAD
	Combination analysis of novel N-glycosylation sites by machine learning model

	Discussion
	Acknowledgements
	References




