
R E S E A R C H Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you 
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the 
licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​​​​t​p​:​/​/​c​r​e​​a​​​t​i​
v​e​​c​​o​​m​​m​​o​n​s​.​o​r​g​/​l​i​c​e​n​s​e​s​/​b​y​-​n​c​-​n​d​/​4​.​0​/​​​​​.​​​

Yu et al. Clinical Proteomics           (2024) 21:66 
https://doi.org/10.1186/s12014-024-09514-4

Introduction
Tuberculosis (TB) is a communicable disease caused 
by Mycobacterium tuberculosis (MTB) infection and a 
major cause of human illness and mortality. Worldwide, 
an estimated 10.6 million people (95% UI: 9.9–11.4 mil-
lion) developed TB in 2022, up from best estimates of 
10.3 million in 2021 and 10.0 million in 2020 [1]. Clini-
cally, TB patients most commonly present to the clinic 
with pulmonary tuberculosis (PTB), a form of TB with 
enhanced communicability that can be difficult to diag-
nose due to its multi-systemic features and protean 
presentation. To address this issue, rapid and accurate 
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Abstract
Background  Tuberculosis (TB) diagnostic monitoring is paramount to clinical decision-making and the host 
biomarkers appears to play a significant role. The currently available diagnostic technology for TB detection is 
inadequate. In the present study, we aimed to identify biomarkers for diagnosis of pulmonary tuberculosis (PTB) 
using urinary metabolomic and proteomic analysis. Methods: In the study, urine from 40 PTB, 40 lung cancer (LCA), 
40 community-acquired pneumonia (CAP) patients and 40 healthy controls (HC) was collected. Biomarker panels 
were selected based on random forest (RF) analysis. Results: A total of 3,868 proteins and 1,272 annotated metabolic 
features were detected using pairwise comparisons. Using AUC ≥ 0.80 as a cutoff value, we picked up five protein 
biomarkers for PTB diagnosis. The five-protein panel yielded an AUC for PTB/HC, PTB/CAP and PTB/LCA of 0.9840, 
0.9680 and 0.9310, respectively. Additionally, five metabolism biomarkers were selected for differential diagnosis 
purpose. By employment of the five-metabolism panel, we could differentiate PTB/HC at an AUC of 0.9940, PTB/CAP 
of 0.8920, and PTB/LCA of 0.8570. Conclusion: Our data demonstrate that metabolomic and proteomic analysis can 
identify a novel urine biomarker panel to diagnose PTB with high sensitivity and specificity. The receiver operating 
characteristic curve analysis showed that it is possible to perform non-invasive clinical diagnoses of PTB through these 
urine biomarkers.
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diagnostics are required to achieve early point-of-care 
detection. Current TB diagnostic methods are hampered 
by challenges that either compromise their accuracy or 
hinder their widespread use, especially in resource-lim-
ited settings [2]. For example, conventional gold standard 
TB-diagnostic methods (i.e., sputum microscopy and 
microbiologic culture) are accessible but lack sensitiv-
ity [1, 2]. By contrast, GeneXpert MTB/RIF offers rapid 
detection in this regard and has shown good sensitivity 
(97%) and correlation time to culture positivity but suf-
fers from poor specificity ranging from 49 to 72% [3, 4]. 
For these reasons, improved tests are needed that can 
accurately detect additional host biomarkers associated 
with active TB disease, while also distinguishing TB from 
other respiratory illnesses with similar symptomatology.

Metabolomics, an emerging systems-level technology 
that enables unbiased, multiplexed metabolite profil-
ing and comparative analysis of biological samples, can 
generate a fingerprint of all metabolites within a cellular 
system [5]. Meanwhile, another advanced systems-level 
approach, proteomics, has enabled the characterization 
of proteomes, the total protein contents of a cell, tissue, 
or organism. Within the domain of clinical infectious dis-
ease management, metabolomics and proteomics have 
proven to be invaluable assets, enabling early diagnosis, 
precise prognosis, and effective monitoring of disease 
progression [5, 6]. Urine collection is both less inva-
sive and more convenient than collection of blood and 
other biological fluids. Furthermore, urine differs from 
blood in that urine is not subject to homeostatic control 
and thus its composition mirrors even small systemic 
changes [7]. Nevertheless, although metabolomics and 
proteomics approaches have been used successfully for 
TB biomarker discovery in a few reported studies [8–11], 
a single omics-based approach may fall short of provid-
ing strongly predictive and reliable biomarkers for use in 
TB diagnosis and differential diagnosis. To address these 
issues, here we applied proteomics and metabolomics to 
test urine specimens for PTB-specific protein and metab-
olite changes in order to identify potential PTB-diagnos-
tic biomarkers.

Methods
Study population
Urine specimens were collected from subjects who had 
provided written informed consent for participation in 
the study. Confirmed PTB inpatients of Beijing Chest 
Hospital, Capital Medical University ranging in age from 
18 to 65 years were enrolled from April 2022 to April 
2023. During the same period, healthy controls (HCs) and 
patients with lung cancer (LCA) or community-acquired 
pneumonia (CAP) were recruited in a 1:1:1 ratio. As 
shown in Fig.  1 (apply Biorender to make the figure), 
enrollment of four cohorts of participants resulted in the 

collection of 160 urine specimens that yielded metabo-
lome profiles for PTB patients (n = 40), LCA patients 
(n = 40), CAP patients (n = 40), and HC subjects (n = 40). 
For proteomic analysis, urine specimens obtained from 
an equal number of participants from each group (n = 15) 
were randomly selected for analysis.

Case definitions
The diagnostic criteria for TB (WS 288–2017) issued 
by the National Health Council of the People’s Repub-
lic of China were our standard for the inclusion of PTB 
patients into the study: (1) positive result of sputum 
acid-fast bacilli (AFB) smear or culture assay; (2) positive 
result obtained from a molecular-based MTB-detection 
assay; (3) lung specimen-based pathological diagnosis of 
TB. A diagnosis of LCA was confirmed based on cytolog-
ical or surgical histopathological findings. CAP was diag-
nosed based on detection of a lung infiltrate (appearing as 
a shadow on a chest radiograph) accompanied by at least 
one of the following symptoms: cough, sputum produc-
tion, fever, dyspnea, and/or chest pain [12], as directed 
by the “Infectious Diseases Society of America/American 
Thoracic Society consensus guidelines on the manage-
ment of community-acquired pneumonia in adults” [12]. 
The subjects in the HC group were healthy individuals. 
Patients received no drug treatments prior to urine col-
lection. Subjects excluded from the study were those with 
HIV infection, viral hepatitis, neurodegenerative disor-
ders, immunodeficiencies, those who were pregnant or 
breastfeeding or planning to become pregnant, those tak-
ing immunosuppressant medications, those who refused 
to sign the informed consent form, and those who par-
ticipated in other clinical trials within one month prior to 
the study enrollment date.

Sample collection and processing
Random, midstream urine samples obtained from all 
participants (40 mL) were collected into 50-mL Falcon 
tubes and transported to the laboratory at 4–8℃. Coded 
urine samples were centrifuged at 5000 × g for 10 min at 
4 °C then supernatants were aliquoted into multiple 2 mL 
cryovials and stored at -80 °C until needed for testing.

Untargeted metabolomic analysis of urine specimens
Metabolomics profiling analysis was conducted using a 
UPLC-ESI-Q-Orbitrap-MS system (UHPLC, Shimadzu 
Nexera X2 LC-30AD, Shimadzu, Japan) coupled with 
Q-Exactive Plus (Thermo Scientific, San Jose, USA). For 
liquid chromatography (LC) separation of samples, we 
used an ACQUITY UPLC® HSS T3 column and followed 
specific steps as described in the supplementary material.
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Proteomic analysis of urine specimens
Proteins were extracted from urine samples using SDT 
lysis buffer (4% SDS, 100 mM DTT, 100 mM Tris-HCl 
pH 8.0) then digested using the filter-aided sample prep-
aration (FASP) method [13]. The pooled peptide mix-
ture prepared from each urine sample was fractionated 
using an Agilent 1260 high-performance liquid chro-
matography (HPLC) system equipped with a Waters XB 
ridge BEH C18 column; specific protein extraction and 
digestion steps and HPLC and tandem MS settings are 
described in the supplementary material.

Statistical analysis
Statistical analysis of clinical data
Clinical data were analyzed using IBM SPSS Statistics 24 
and expressed as the mean ± SD. The baseline characteris-
tics of the study population were statistically analyzed by 
Chi-square test, Kruskal-Wallis H test, and Mann-Whit-
ney U test, followed by Bonferroni’s multiple comparison 
test. P value < 0.05 indicated statistical significance.

Statistical and bioinformatic analysis
Bioinformatics analysis was carried out using Micro-
soft Excel and R statistical computing software. The 
data quality of metabolites in terms of homogeneity and 
reproducibility was evaluated by the principal compo-
nent analysis (PCA). Then, the orthogonal partial least 
squares discriminant analysis (OPLS-DA) method was 
applied to remove irrelevant variables. Meanwhile, the 
variable importance in the projection (VIP) values were 
obtained from each variable to measure the contribu-
tion of variables to the model. The quality of the OPLS-
DA was validated by the permutation test. The t-test was 
used to obtain P values of each individual variables, fol-
lowed by the adjustment of false discovery rate (FDR) 
by multiple hypothesis tests. The bioinformatic analysis 
includes hierarchical clustering and volcano plot genera-
tion using the statistical programming language R, which 
is appropriate for omics data analysis.

Biomarkers were ranked using an ensemble feature 
selection (EFS)-based approach [14], which entailed use 
of applied multiple feature selection algorithms to avoid 

Fig. 1  Summary of the study design and cohort details. Urine samples were collected and subjected to proteomics and metabolomics. PTB: pulmonary 
tuberculosis; LCA: lung cancer; CAP: community-acquired pneumonia; HC: Healthy controls; UHPLC-MS/MS: Ultra-High Performance Liquid Chromatog-
raphy-ESI-Q-Orbitrap-MS/MS; DDA: Data-dependent Acquisition; DIA: Data-independent Acquisition
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biases associated with individual feature selection algo-
rithms [15]. The EFS approach combines Mann-Whitney 
U tests, logistic regression, Pearson and Spearman cor-
relations and two random forest algorithm implementa-
tions, cforest and randomForest, into a single, rankable 
score. Statistically significant, differentially abundant 
metabolites (DAMs) were identified based on the cri-
teria of a FC (fold change) > 1.2 or < 0.83, VIP > 1, FDR 
value < 0.05, and removal of exogenous metabolites. Dif-
ferentially abundant proteins (DAPs) were analyzed using 
MS stats with linear mixed-effects models [16]. DAPs 
that were deemed significant met conditions of a FC > 1.2 
or < 0.83 and FDR value < 0.05.

Selection of biomarker candidates
To identify biomarkers, receiver operating characteristic 
(ROC) analysis was performed then the predictive power 
of each potential protein and metabolite biomarker was 
evaluated as based on its ROC area-under-the-curve 
(AUC) value. Next, three machine learning classifiers, 
including linear support vector machine (SVM), logistic 
regression (LR), and orange line for random forest (RF) 
were used to generate diagnostic models. The best diag-
nostic model was selected based on accuracy and error 
rates acquired using a ten-fold cross-validation method. 
Finally, ROC curves were employed to assess accuracy 
rates of biomarker combinations incorporating protein 
and metabolite candidate markers.

Results
Clinical characteristics of participants
Unbiased selection of patients was performed. There 
were 160 samples in total, with 40 samples in each group. 
All sample identities were renamed with codes instead of 
the patient’s name and hospital number. The age and gen-
der distribution of the four groups is roughly the same. 
Demographic and clinical characteristics of study partici-
pants are presented in Table 1.

Urine screening for DAPs
Ultimately, analysis of liquid chromatography-tandem 
mass spectrometry (LC-MS/MS) data obtained from the 

60 urine samples of the four groups enabled the detection 
of 41,015 peptides and 3,868 proteins. After data were 
pre-processed and filtered to remove missing values, 
2601 proteins were subjected to further analysis using 
various methods. Differential expression analysis was 
conducted to identify DAPs between PTB versus LCA, 
CAP, or HC groups (Supplementary Figure S1). Volcano 
plots were created to enable visualization of numbers of 
DAPs that were significantly down- and up-regulated 
(Fig. 2A-C). Based on pairwise two-sample t-test results, 
88 DAPs were identified across the four groups (Fig. 2D, 
Supplementary Tables S1-S4). DAPs were grouped 
into four clusters based on protein expression patterns 
using Euclidean distance matrix hierarchical clustering 
(Fig. 2E).

To identify potential PTB-diagnostic protein markers 
in urine specimens obtained from PTB, LCA, CAP, and 
HC subjects, the EFS approach and Student’s t-test were 
employed to aggregate and rank potential protein mark-
ers according to PTB-diagnostic accuracy (Table 1, Sup-
plementary Table S5). The top 20 ranked DAPs for each 
of the four groups are listed in Fig. 2F-H. Use of the EFS 
approach minimizes the risk that top-ranked biomarkers 
are inter-correlated. Potentially reliable PTB-diagnostic 
urinary biomarkers were selected based on average EFS 
ranking, Student’s t-test results, patterns of DAPs overlap 
between PTB and other groups, and clinical relevance. 
The final five protein biomarkers that were selected 
included carboxypeptidase B2 (CPB2), serine protease 
HTRA1 (HTRA1), beta-hexosaminidase (HEXA), fila-
min-A (FLNA), and neuropilin-1 (NRP1). Subsequently, 
each of the five protein biomarkers was evaluated for 
diagnostic potential using relative quantitative compari-
son and ROC curve analysis. The results demonstrated 
that all five proteins performed well as PTB-diagnostic 
biomarkers, as based on AUCs of individual proteins of 
≥ 0.80 and p values of < 0.01 (Supplementary Table S6, 
Supplementary Figure S2).

In order to assess the combined PTB-diagnostic perfor-
mance of the five-biomarker set, we conducted ten-fold 
cross-validation on all pairwise predictions generated 
using three machine learning algorithms: SVM, RF, and 

Table 1  Demographic characteristics of participants enrolled
P value

Characteristics PTB(n = 40) c LCA(n = 40) c CAP(n = 40) c HC(n = 40) c LCA vs. PTB a CAP vs. PTB a HC vs. PTB a All group b

Age, years(mean) 45.02 ± 10.62 48.20 ± 9.63 46.15 ± 11.58 44.17 ± 12.76 0.507 0.538 0.922 0.507
Sex (female) 26(65%) 24(60%) 17(45%) 22(55%) 0.646 0.074 0.364 0.316
BMI (kg2/m) 21.61 ± 3.28 22.81 ± 3.01 22.82 ± 3.19 23.85 ± 2.71 0.695 0.564 0.011 0.021
Sputum Acid Fast Bacilli Smear (+/-) 15/25 NA NA NA NA NA NA NA
Sputum Culture (+/-) 22/18 NA NA NA NA NA NA NA
GeneXpert/MTB RIF assay (+/-) 18/12 NA NA NA NA NA NA NA
PTB: pulmonary tuberculosis; LCA: lung cancer; CAP: community-acquired pneumonia; HC: Healthy controls; IQR, interquartile range; SD, standard deviation; BMI: 
Body Mass Index. a Kruskal-Wallis test. b Mann–Whitney U test (continuous variables), Chi-square test (categorical variables). c Data are mean ± SD for the continuous 
variables, number (%) for categorical variables
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Fig. 2  Ensemble feature selection analysis of proteomics data and ROC analysis of potential biomarkers among PTB, CAP, LCA and HC groups (A-C) Vol-
cano plots of the proteomics data for each pairwise comparison. The x-axis is log2 fold-change and the y-axis represents the minus log10p-value. Number 
of significantly down- (green) and up- (red) regulated proteins are shown on top. (D) Venn diagram of the number of DAPs. (E) Heatmap for biomarker 
detection from the proteomics data. Each row represents a protein marker, and each column represents a loading sample across the four groups, includ-
ing PTB, LCA, CAP, and HC. Protein markers are grouped into four clusters via hierarchical clustering. (F-H) EFS analysis for Group PTB/HC, PTB/CAP and 
PTB/LCA. (I-K) Receiver operating characteristic (ROC) curves for each pairwise prediction by three different machine learning methods. Blue line for linear 
support vector machine (SVM), purple line for logistic regression (LR), and orange line for random forest (RF). AUC: the area under the curve
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LR (Fig. 2I-K). Notably, similar results were obtained for 
all three algorithms, thus prompting us to present RF 
analysis results as representative results in this report. RF 
analysis yielded the following respective sensitivity, spec-
ificity, accuracy, and AUC values for the three pairwise 
comparisons: PTB/HC (93.33%, 86.67%, 90%, 0.9840), 
PTB/CAP (93.33%, 93.33%, 93.33%, 0.9680), and PTB/
LCA (100%, 86.67%, 93.33%, 0.9310) (Table 2).

Pairwise comparisons of urinary DAMs
To unveil PTB-associated urine metabolite profiles, we 
conducted metabolomic analysis of all 160 urine samples 
using a UPLC-ESI-Q-Orbitrap-MS system. The results 
of this analysis revealed 47,528 features, subsequent 
analysis was based on annotated 1272 features. Prior to 
data analysis, data integrity was assessed and detected 
no missing values. PCA was performed to evaluate the 
results for overall variability across the four experimental 
groups. PTB and HC results were almost completely sep-
arate (Fig. 3A), while PTB/CAP and PTB/LCA compari-
sons exhibited overlapping results (Fig.  3B-C). The data 
of urine metabolites in the four groups (PTB, LCA, CAP, 
and HC) were analyzed using the OPLS-DA method. 
According to the characteristics of the model, the data of 
any two groups could be well distinguished (Fig.  3D-F). 
Remarkably, verification model data indicated that the 
OPLS-DA model was not over-fitting and was reliable to 
screen metabolic biomarkers (Supplementary Figure S3). 
After excluding exogenous metabolites that were identi-
fied by comparing our DAMs to entries within the Lum-
ingbio untargeted LC-MS database, we identified 76, 38, 
and 54 significantly different endogenous DAMs (Sup-
plementary Table S7-S9) from PTB/HC, PTB/CAP, and 
PTB/LCA pairwise comparisons, respectively.

Subsequently, we employed the EFS approach and 
Student’s t-test to rank endogenous DAMs (Fig.  3G-I). 
Guided by the results obtained from the aforementioned 
pairwise comparisons, we identified the five endogenous 
DAMs for PTB/HC (oleamide, C17-sphingosine, FA 
13:3 + 1O, 3-nitro-L-tyrosine, 5-hydroxy-L-tryptophan), 
PTB/CAP (dihydrouracil, leucyl-leucine, 16-hydroxyp-
almitate, uridine, nicotinamide), and PTB/LCA 
(leucyl-leucine, hexylamine, uridine, choline, 1-methyl-
nicotinamide). This selection was based on metabolite 

biomarker AUCs of ≥ 0.71 and p values of < 0.01 (Supple-
mentary Table S10, Supplementary Figure S4), alongside 
additional criteria including: (1) high EFS value; (2) high 
FC value; and (3) established associations with PTB met-
abolic processes. Thereafter, we conducted ROC analysis 
to determine AUC values for the combined five-metab-
olite biomarker set identified from the PTB/HC, PTB/
CAP, and PTB/LCA pairwise comparisons (Fig.  3J-L). 
RF machine learning analysis yielded respective sensi-
tivity, specificity, accuracy, and AUC values for the com-
bined five-metabolite set for PTB/HC of 97.44%, 97.44%, 
97.44%, 0.9940, for PTB/CAP of 77.50%, 89.74%, 83.54%, 
0.8920, and for PTB/LCA of 82.05%, 87.50%, 84.81%, 
0.8570 (Table 2).

Discussion
The accurate and rapid diagnosis of TB, especially at the 
point-of-care, is crucial for curbing the spread of the dis-
ease, treatment monitoring, risk analysis and progno-
sis [9]. A pressing challenge in TB diagnosis lies in the 
development of more streamlined, accurate, and rapid 
point-of-care tests [17]. Although efforts to develop novel 
tools for infectious disease diagnosis have been focused 
on discovery of single disease-specific biomarkers, this 
focus will likely shift towards discovery of bio-profiles or 
biosignatures comprised of well-defined sets of reliable 
molecular indicators [18]. In the present study, we identi-
fied five urine proteins with strong potential applicabil-
ity as single PTB-diagnostic biomarkers (CPB2, HTRA1, 
HEXA, FLNA, NRP1) that all yielded AUCs of > 0.80. 
Notably, a five-marker biosignature incorporating the 
same proteins effectively distinguished PTB from CAP, 
LCA, and HC, as based on AUCs of 0.9680, 0.9310, and 
0.9840, respectively. However, the use of individual pro-
teins as diagnostic tools for infectious diseases such as 
PTB is not generally recommended, since single inflam-
matory biomarkers tend to have low disease specificities 
[19]. As expected, our study demonstrated superior PTB-
diagnostic accuracies of biomarker combinations as com-
pared to individual markers, as reflected by EFS ranking 
and Student’s t-test results, as observed in previous stud-
ies [20–22].

Meanwhile, our results also indicate that proteomics is 
valuable tool for achieving effective PTB diagnosis and 

Table 2  Relevant parameters of RF machine learning method
AUC Cut off Sensitivity Specificity Accuracy Likelihood Ratio

PTB vs. CAP M 0.8920 0.6390 0.7750 0.8974 0.8354 7.5563
PTB vs. CAP P 0.9680 0.5001 0.9333 0.9333 0.9333 14.0000
PTB vs. HC M 0.9940 0.7026 0.9744 0.9744 0.9744 38.0000
PTB vs. HC P 0.9840 0.4467 0.9333 0.8667 0.9000 7.0000
PTB vs. LCA M 0.8570 0.4381 0.8205 0.8750 0.8481 6.5641
PTB vs. LCA P 0.9310 0.1678 1.0000 0.8667 0.9333 7.5000
*M: Metabolome biomarkers; *P: Proteome biomarkers
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Fig. 3  Ensemble feature selection analysis of metabolomics data and ROC analysis of potential biomarkers among PTB, CAP, LCA and HC groups (A-C) 
PCA score plots for Group PTB/HC, PTB/CAP and PTB/LCA. (D-F) OPLS-DA score plots for Group PTB/HC, PTB/CAP and PTB/LCA. The R2(X), R2(Y)and Q2 
values for the three OPLS-DA models were: R2(X) = 0.306, R2(Y) = 0.944, Q2 = 0.885 for D; R2(X) = 0.213, R2(Y) = 0.753, Q2 = 0.645 for E and R2(X) = 0.224, 
R2(Y) = 0.754, Q2 = 0.637 for F. PCA: principal components analysis; OPLS-DA: orthogonal partial least squares discriminant analysis. (G-I) EFS analysis for 
Group PTB/HC, PTB/CAP and PTB/LCA. (J-L) ROC curves for each pairwise prediction by three different machine learning methods
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differential diagnosis, as consistent with results obtained 
by Liu et al. who analyzed and compared urinary pro-
teomic profiles of TB patients and healthy controls. They 
found that the combined set of P22352, Q9P121, P15151, 
Q13291, and Q8NDA2 biomarkers could be useful for 
diagnosing TB, as based on a TB-diagnostic sensitiv-
ity rate of 82.70% and latent TB infection (LTBI)-diag-
nostic specificity rate of 92.30% [20]. Recently, P01011, 
Q8NCW5, P28072, A0A2Q2TTZ9, and Q99574 were 
identified via MS conducted using a Q-Exactive Orbitrap 
mass spectrometer then these biomarkers were com-
bined to generate a five-protein biosignature that, after 
leave-one-out cross-validation, yielded an AUC of 1.00 
(95% CI, 1.00–1.00) and exhibited a TB-diagnostic sen-
sitivity rate of 100% (95% CI, 76.20–100%) and specificity 
rate of 90.9% (95% CI, 58.70–99.80%) [21]. One impor-
tant issue is that biomarkers from different studies rarely 
overlap even when the groups to be compared are the 
same. The reasons can be the small sample size, statistical 
fluctuations in individual systemic biological state, race 
factor, experimental conditions, and analytical appara-
tuses differ from one study to another [9, 22]. However, 
one must consider the possibility that multiple indepen-
dent systemic regulated states exist, each manifesting the 
same typical TB symptoms, yet none of the biomarkers 
are consistently up- or down-regulated across these dif-
ferent states. This is akin to a non-linear complex equa-
tion often having multiple solutions [9].

Metabolomics, like proteomics, has been increasingly 
used for PTB diagnosis in recent years. For example, in 
2014–2015, Mrinal et al. [23] and Mahapatra et al. [24] 
reported that LC-MS and gas chromatography-mass 
spectrometry methods, respectively, could be used to 
identify metabolites in urine samples of TB patients. 
Since then, a multitude of metabolomics-based studies 
have been reported describing the successful use of small 
molecule metabolites as urine PTB-diagnostic biomark-
ers [10]. However, these studies only explored a subset 
of all potential PTB-predictive DAMs in urine of PTB 
patients, as LC-MS detection of all urinary compounds is 
not yet feasible. To broaden our repertoire of identified 
metabolites, we employed ultra-high-performance liquid 
chromatography (UHPLC)-MS/MS techniques to screen 
for DAMs present in urine specimens of PTB, LCA, CAP, 
and HC groups. Our findings pinpointed five poten-
tially useful PTB-diagnostic and differentially diagnostic 
DAMs for each group, as based on AUCs of ≥ 0.71 and p 
values of < 0.01. Interestingly, a biosignature incorporat-
ing the five metabolite biomarkers was capable of effec-
tively differentiating PTB from CAP, LCA, and HC, as 
based on respective AUCs of 0.8920, 0.8570, and 0.9940. 
These DAMs are mainly by-products of amino acid, 
nucleotide, and lipid metabolism and are often generated 

during oxidative stress and inflammatory responses [10, 
25–27].

In a similar vein, metabolomics results obtained by 
Jiang et al. [25] and Cho et al. [27] demonstrated that 
changes in blood serum levels of multiple amino acids 
in active TB patients may serve as useful biomarkers for 
achieving adjunctive, rapid, and noninvasive PTB diagno-
sis. Oleamide has been shown to be a useful biomarker 
for distinguishing between tuberculous pleural effu-
sion and malignant pleural effusion [28]. Furthermore, 
a biosignature incorporating these three metabolites 
effectively discriminated between TB patients and HCs 
(AUC = 0.97). Another noteworthy study highlighted the 
potential of free 3-NT levels in biological samples to dif-
ferentiate drug-sensitive TB from drug-resistant TB [26]. 
More recently, a nuclear magnetic resonance-based uri-
nary metabolomics study identified eight metabolites; 
a urine metabolic fingerprint based on these metabo-
lites could be used to effectively discriminate active TB 
patients from pneumococcal pneumonia patients, those 
with LTBI, and HCs [10]. This urinary metabolic finger-
print may also be capable of distinguishing PTB patients 
from HCs, LCA patients, and CAP patients and thus may 
be a useful noninvasive biosignature for achieving effec-
tive PTB diagnosis and differential diagnosis, warranting 
further research.

Importantly, different omics methodologies detect dif-
ferent subsets of diagnostic biomarkers present in com-
plex clinical specimens. In fact, the power of Multi-omics 
approach has already been shown by in vivo and in vitro 
modelling studies that reconciled multilayered omics 
data acquisitions and metabolic and other phenotypes 
over a large number of experiments (performed in dif-
ferent conditions) and were able to accurately predict 
biological behavior [29]. Here, we integrated proteomics 
and metabolomics to discover urine PTB-diagnostic bio-
markers (five proteins and five metabolites) using pair-
wise comparisons of biomarkers of PTB, LCA, CAP, and 
HC groups. As an additional contribution, we present a 
multi-omics-derived PTB-diagnostic biomarker signa-
ture, a rarity in the literature. In addition, the quantifi-
cation of statistically significant biomarkers identified in 
Multi-omics would allow this technology to be adapted 
to a point-of-care test, especially in resource-constrained 
settings. This study had several limitations. First, the 
number of urine specimens subjected to proteomics and 
metabolomics analyses was relatively small and thus pre-
vented us from ruling out potential bias due to sample 
heterogeneity, an issue that can be addressed through 
validation of biomarkers using large sample sets. Second, 
although we included samples based on our criteria for 
our comparative analyses, additional undetected, uncon-
trolled genetic, clinical, or environmental confound-
ing factors may have influenced our results. Third, the 
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clinical efficacy of biomarkers identified in our cohort 
was also not assessed in a larger population; thus, further 
validation is urgently required. Finally, due to the lack of 
our ability to interpret the complex nature and biological 
mechanisms of metabolism between diverse analytes, we 
focused on the analysis of diagnostic performance to the 
five protein and five metabolism biomarkers, we made 
the raw data publicly available.

Conclusions
This study employed metabolomic and proteomic analy-
sis to identify urine biomarkers capable of distinguishing 
PTB and LCA, CAP, and HC subjects with high sensitiv-
ity and specificity. Although it is too early to conclude 
that these markers will replace the invasive approach 
for diagnosing TB in the clinic, our findings indeed shed 
light on the development of valuable diagnostic tools 
for effective clinical implementation and combat TB to 
achieve earlier prevention, earlier diagnosis, and ear-
lier treatment of TB. We believe that these results lay a 
foundation to support development of novel methods for 
diagnosing and identifying PTB patients, meanwhile also 
enhancing our understanding of underlying PTB disease 
mechanisms.
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