
R E V I E W Open Access

© The Author(s) 2025. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​​:​/​/​​c​r​e​a​​t​i​​v​e​c​​o​m​m​​o​n​s​.​​o​r​​g​/​l​i​c​e​n​s​e​s​/​b​y​/​4​.​0​/.

An et al. Clinical Proteomics           (2025) 22:15 
https://doi.org/10.1186/s12014-025-09528-6

Introduction
Endometrial cancer (EC) is a type of cancer that origi-
nates from the inner epithelial layer of the uterus, which 
is rising in both incidence and associated mortality [1, 
2]. Worldwide, approximately 420,368 women are diag-
nosed with endometrial cancer each year, and it is esti-
mated that this cancer results in the death of about 
97,723 women (​h​t​t​p​​s​:​/​​/​w​w​w​​.​w​​c​r​f​​.​o​r​​g​/​c​a​​n​c​​e​r​-​​t​r​e​​n​d​s​/​​
e​n​​d​o​m​​e​t​r​​i​a​l​-​​c​a​​n​c​e​r​-​s​t​a​t​i​s​t​i​c​s​/). When considering all 
stages ​c​o​l​l​e​c​t​i​v​e​l​y​, the overall survival rate for 5 years is 
approximately 80% [3]. Depending on the clinical symp-
toms of the endocrine-metabolic condition and hyper-
estrogenic manifestations, Bokhman systematically 
classified endometrial cancer into two categories for the 
first time in 1983 [4, 5]. Type I, also known as endometri-
oid endometrial carcinoma (EEC), is the most common 
type, accounting for about 80% of all cases. It has low 
grades and a favorable prognosis, associated with excess 
estrogen, obesity, and endometrial hyperplasia. On the 
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Abstract
Endometrial cancer (EC), a prevalent and intricate disease, is associated with a poor prognosis among gynecological 
malignancies. Its incidence rising globally underscores the urgent need for biomarkers detection in both research 
and clinical settings. Over the past decade, we’ve witnessed rapid advancements in biological methodologies and 
techniques. A multitude of omics technologies, encompassing genomic/transcriptomic sequencing and proteomic/
metabolomic mass spectrometry, have been extensively employed to analyze both tissue and liquid samples 
derived from EC patients. The integration of multi-omics data has not only broadened our understanding of the 
disease but also unearthed valuable biomarkers specific to EC. This review encapsulates the recent progress and 
future prospects in the application of multi-omics technologies in EC research, emphasizing the potential of multi-
omics in uncovering novel biomarkers and enhancing clinical assessments.

Keywords  Endometrial cancer, Biomarker discovery, Multi-omics

Present progress in biomarker discovery 
of endometrial cancer by multi-omics 
approaches
Yuhao An2*†, Quanxin Feng1†, Li Jia3, Xinrui Sha2, Tuanjie Zhang2, Linlin Lu4, Rui Wang2* and Bin Bai1*

http://creativecommons.org/licenses/by/4.0/
https://www.wcrf.org/cancer-trends/endometrial-cancer-statistics/
https://www.wcrf.org/cancer-trends/endometrial-cancer-statistics/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12014-025-09528-6&domain=pdf&date_stamp=2025-4-22


Page 2 of 12An et al. Clinical Proteomics           (2025) 22:15 

opposite, “Type II”, also named uterine serous carcinoma, 
is a higher-grade non-endometrioid tumor, accounting 
for about 10%, associated with atrophic endometrium, 
exhibiting more aggressive behavior and has a worse 
prognosis [6]. Endometrial clear cell carcinoma (ECCC) 
is a relatively rare type of endometrial cancer, typically 
less than 6% of all endometrial cancers [7]. It shares the 
features of the former two types, such as it is associated 
with atrophic endometrium, showing aggressive develop-
ment and worse prognosis like type II, and the character-
istics at the immunohistochemical and molecular levels 
like type I [8]. The rest type of EC is carcinosarcoma, 
which is a relatively rare and highly invasive type of endo-
metrial cancer, only account for around 3% of endome-
trial cancers [9]. The definition as a framework instructs 
the study of teaching and scientific of endometrial cancer 
continuously. With the advancement of molecular tech-
niques over the decades, multiple-dimensional charac-
teristics have been used to supplement EC’s classification 
definition. The Cancer Genome Atlas Research Network 
released a study that profiling EC at the genomic, tran-
scriptomic, and proteomic levels. Based on the mutations 
and histological features, they classified EC into four 
types, such as POLE (a catalytic unit of DNA polymerase 
epsilon) ultramutated, accounting for 7.3% (17 of 232); 
MSI (microsatellite instability) hypermutated, account-
ing for 28.0% (65 of 232); low-copy-number, accounting 
for 38.8% (90 of 232); and high-copy-number, account-
ing for 25.9% (60 of 232) [10]. Early diagnosis is an ideal 
strategy to improve the low survival rate, evaluating the 
risk of EC becoming malignant or recurring, measurable 
indicators of abnormal biological states or dysfunctional 
conditions such as biomarkers or molecular features 
could be extremely useful [10–13]. The alteration detec-
tion at the early stage holds the potential to refine the 

comprehensive classification system for improved accu-
racy in diagnosing malignancy, as well as to enhance the 
effectiveness of corresponding treatments. Herein, we 
offer an overview of the role multi-omics technologies 
play in biomarker discovery and discuss the prospective 
strategies for the early diagnosis of EC.

Multi-bio-layer omic data for prognosis of EC

Sample source
As Fig.  1 shows, advances in novel technique develop-
ment have enabled the use of many types of samples in 
biomarker discovery. Tissue is the traditional and pri-
mary sample for detecting certain gene products specifi-
cally expressed in the tumor, facilitating the identification 
of specific biomarkers [14]. The testing based on tis-
sue biopsy provides a definitive diagnosis of cancer by 
observing the morphology of the cells and identifying the 
malignant features. Although tissue biopsy is a standard 
for diagnosing and studying cancer, it does have several 
limitations. Because tumors are heterogeneous, tissue 
biopsy might not describe the entire cancer profiling. 
The poor repeatability of sample collection complicates 
this condition further. Additionally, puncturing to collect 
biopsies may facilitate cancer cell metastasis and elevate 
the risk to patients’ lives [15]. In EC studies, the sam-
pling procedure also poses challenges with approximately 
6–33% of cases being unsuitable for pathological diagno-
sis due to the limited volume of target areas [16]. Liquid 
biopsy refers to the testing of blood or bodily secretions 
for the presence of cancer cells [17], which is a minimally 
invasive approach without surgical procedures. The low 
cost and convenience make biofluids ideal samples for 
tumor research. Compared with tissue biopsies, biofluids 
focus on the localized area of the tumor, liquid samples 

Fig. 1  Omic data generation and computation from various sources at different expression levels

 



Page 3 of 12An et al. Clinical Proteomics           (2025) 22:15 

could provide information on the whole body condition 
by continuous monitoring without any invasive opera-
tion [18], helping doctors assess the effectiveness of 
the therapy, and make the necessary adjustments. The 
screening approaches for tumor-derived factors present 
in a variety of body fluids [19], such as blood [20], cer-
vicovaginal fluid [20, 21], urine [22, 23], uterine lavage 
fluid [24], abdominopelvic washing, and ascites [25], 
have been used in the study and diagnosis of EC, mea-
suring the characteristics of different levels. In the clinic, 
blood stands as the most commonly tested specimen for 
liquid biopsy. Except for that, several other bodily fluids 
have been shown high valuable as a non-invasive sample 
source. Cervicovaginal fluid is a complex blend of secre-
tions from the uterus, cervix, and vagina, which has been 
used for biomarker discovery of gynecological diseases 
[21, 23]. There are studies indicating that the molecular 
signatures of endometrial cancer (EC) can be identified 
in cervical scrapes [26], endometrial brushes [27, 28], 
vaginal swabs [29, 30], and tampons [31, 32], suggesting 
that endometrial cell fragments could also be present in 
urine [22, 23]. Uterine lavage and abdominopelvic wash-
ing are procedures in a gynecological study introducing 
a saline solution into the uterine, abdominal, and pelvic 
cavities, and collecting the subsequent for detection and 
evaluation of cancer development. Ascites, a common 
symptom in late-stage cancer, is a valuable liquid biopsy 
medium, which often occurs in advanced cancer cases, 
containing cellular and molecular shed by the tumor. The 
biofluid contains shed cells [33], cancer cells [25, 34], tis-
sue fragments, and other substances from the endome-
trial lining [24], such as proteins [35], and exosomes [36], 
providing a profiling of the tumor microenvironment, 
offering insights into the progression of abdominal malig-
nancies such as endometrial [25], ovarian [37], pancre-
atic [38], and gastrointestinal [36] cancers. Exosomes are 
nanovesicles ranging from 30 to 150 nanometers in size, 
released by various cell types of both tissue and biofluids, 
rich in nucleic acids, lipids, and proteins [39–41]. They 
are extracellular structures enclosed by a lipid bilayer, 
formed by the outward budding of the plasma membrane 
and released into the extracellular environment through 
fusion with the plasma membrane [42], delivering infor-
mation from tumor cells and various cells to the micro-
environment [43–46]. Exosomal compositions reflect 
the molecular characteristics of the cells of origin and 
vary depending on distinct dysfunctional status. Conse-
quently, tumor cells release unique exosomal contents, 
providing specific molecular mediators in extracellular 
communication [47, 48].

Data expression levels
Whether tissue, biological fluids, or exosomes [49] from 
them are important carriers of genetic material, full 

of various cancer biomarkers. In the advance of high-
throughput techniques development, large amounts 
of omic data were generated and analyzed. The advent 
of next-generation sequencing (NGS) has significantly 
enhanced the precision and efficiency of genomic and 
transcriptomic studies, resulting in tons of discoveries 
related to genetic factors in cancer. The first major type of 
‘omics’ data to be found and measured on the biology and 
development of cancer came from genomic sequences. 
Based on NGS, tumor genomic profiling becomes a com-
mon tool for classifying different types of cancer and 
identifying biomarkers that can evaluate and predict dis-
ease behavior. Somatic variants during cancer incidents 
can lead to the development and progression of tumors 
by affecting genes that control cell growth, division, and 
death. The distribution of mutation frequencies and 
types from cancers could be adopted for patient diagnos-
tics and biomarker discovery [50]. Somatic copy number 
alterations (SCNAs), a type of somatic variant, occur 
in cancer cells to participate in cancer development 
by amplifications and deletions of the DNA segments. 
Through SCNAs, endometrial cancer was classified into 
different groups with significant prognostics [10], show-
ing the potential of SCNAs as a tool for biomarker detec-
tion. Circulating tumor DNA (ctDNA) [51] is a kind of 
small nucleic acid released into the blood from the apop-
tosis or necrosis of tumor cells, whose expression level is 
affected by various immune responses, tumor status, and 
progression [52].

In contrast to the genome, which offers a relatively 
stable representation of the genetic characteristics, the 
transcriptome changes across various tissues, stages of 
development, and disease conditions [53]. Thus, under-
standing the variations in the transcriptome is key to 
knowing how genes respond and adjust under genetic or 
environmental factor influence. Messenger RNA (mRNA) 
serves as a template for protein synthesis. The mRNA 
abundance is often measured to determine the expres-
sion of genes associated with cancer. For instance, it has 
been adopted for prognostic markers of EC, promoting 
the development of effective targets in EC treatment 
[54]. In the human genome, the vast majority of genes 
are transcribed into non-coding RNAs (ncRNAs), which 
do not translate into proteins but have important bio-
logical functions, regulating the initiation and progres-
sion of various cancers [55]. Despite ncRNAs not being 
translated into proteins, there is persuasive evidence that 
they may act as promising biomarkers for cancer prog-
nosis by regulating other genes [56]. In recent decades, 
studies of the function, regulatory mechanism, and thera-
peutic potential of the ncRNAs in EC are rapidly evolv-
ing, such as microRNA (miRNA) [57, 58], long ncRNA 
(lncRNA) [59], and circular RNA (circRNA) [60]. miR-
NAs are endogenous, small ncRNAs (19–25 nucleotides) 
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that regulate gene expression post-transcriptionally 
[61], which attaches to matching sequences within spe-
cific mRNAs, usually resulting in gene silencing through 
translational repression or target degradation [62]. miR-
NAs also connect with EC development, which can 
regulate the expression of genes involved in adhesion, 
migration, and invasion [63]. Based on this fact, several 
studies presented that miRNA could be the biomarker 
to predict the prognosis of EC [64, 65]. Zhou et al. con-
ducted miRNA biomarker identification using the TCGA 
database and developed a linear regression model to 
assess the progression of EC. In their study, 26 miRNAs 
were found to have characteristics of two groups with 
different immune response conditions [66]. lncRNAs 
are longer than 200 nucleotides, also widely involved in 
a range of physiological activities [67]. Jiang et al. identi-
fied 1,931 expressed lncRNAs and established a subgroup 
classification depending on the discovery, providing the 
feature patterns to measure the risk of malignancy of 
EC [68]. Compared with lncRNAs, circRNAs are also 
more than 200 nt, but with a ring structure. The circular 
structure makes them more stable than linear RNAs, act-
ing as competitive endogenous RNAs or as “microRNA 
sponges” to bind microRNAs, and preventing them from 
binding their target mRNAs and regulating gene expres-
sion in this way. Due to their ring-like structure stability 
and cell-type-specific expression patterns, circRNAs have 
been investigated as potential biomarkers for EC [69, 70].

Proteins, as the executors of gene functions, play a vital 
role in cellular activities and biological processes. The 
proteome refers to the complete set of proteins present 
in a cell, tissue, or organism at a specific time and under 
particular conditions. Proteomics is the large-scale study 
of proteomes, focusing on the comprehensive analysis of 
all proteins produced by an organism, system, or biologi-
cal context. Mass spectrometry (MS) emerges as a precise 
technique for comprehensive proteomic studies, facili-
tating the measurement of features and alterations in 
proteomes. Proteomics complements genomics and tran-
scriptomics by providing information about the actual 
functional molecules within the cell and can uncover 
changes in protein expression, modifications, localiza-
tion, and interactions that occur in cancer states. There 
are two primary methods for acquiring proteomic data 
in the data generation process: data-dependent acquisi-
tion (DDA) and data-independent acquisition (DIA). The 
DDA method traditionally selects peptides based on the 
highest intensity signals for mapping to a pre-defined 
database [71]. While this approach enhances the cred-
ibility of the results, its stochastic selection process can 
lead to the loss of valuable information regarding low-
abundant peptides [72]. In contrast, the DIA strategy is 
built upon the development of high-speed scanning tech-
niques, which collect fragments of individual peptides 

across a series of mass windows, providing compre-
hensive peptide profiling with high reproducibility [71]. 
Both methods were employed for biomarker discovery in 
endometrial cancer (EC). For instance, in Wang’s study 
[73], 20 patients with endometrial lesions and 7 healthy 
women were enrolled for specimen acquisition, lead-
ing to the identification of 7 biomarker candidates for 
EC using LC-MS/MS with a DDA strategy. Meanwhile, 
Jamaluddin’s team collected 63 tumor biopsies from 20 
patients to profile the expression features of EC using the 
DIA strategy [74].

The term “epigenetics” was originally coined by Con-
rad Waddington in 1942 to describe heritable changes 
in phenotype that occur without alterations in the DNA 
sequence. Benefiting from the development of various 
global omic techniques, the complexity and plasticity 
of epigenetics have become increasingly visible to us. 
Epigenetics encompasses a variety of reversible modi-
fications to DNA, proteins, and RNA, usually happen-
ing on chromatin, that work together to regulate gene 
expression and cellular function [75]. As the primary 
mechanism of carcinogenesis at the epigenetic level, 
hypermethylation at site-specific DNA could silence 
tumor suppressor genes, while global hypomethylation 
can lead to chromosomal instability and oncogene activa-
tion [76]. In a study, researchers collected urine samples 
from 42 endometrial cancer (EC) patients and 46 healthy 
controls, identifying three DNA methylation markers 
that demonstrated high predictive performance for EC 
[77]. It has been shown that DNA methylation in urine is 
an effective source for EC biomarker discovery. Chroma-
tin serves as an instructive DNA scaffold that responds 
to external factors for DNA regulation. As the principal 
component of chromatin, histones play crucial functions 
through post-translational modifications (PTMs). Acety-
lation, phosphorylation, glycosylation and other modi-
fications as PTMs have gotten more attention for their 
diverse roles in the regulation of gene expression, protein 
structure, and molecular interactions. Some studies show 
that changes in the PTMs of proteins that are essential 
for prognosis and cell proliferation can cause tumorigen-
esis [39, 78]. Since protein is the basic functional element 
of most biological processes, its abundance and PTMs 
have been studied to provide deeper insights into disease, 
which is valuable in identifying diagnostic and prog-
nostic markers for EC [79, 80]. In comparison with the 
modifications of DNA and proteins, relatively few reports 
indicate that mRNA undergoes extensive chemical modi-
fications that could alter its function [81]. Post-transcrip-
tional modification refers to the various biochemical 
modifications that RNA undergoes after transcription 
and before translation. These modifications are essential 
for the stability, localization, and function of RNA mole-
cules. N6-methyladenosine (m6A) modification is widely 
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identified in mRNA, which regulates gene expression 
across several processes related to tumor proliferation, 
invasion, and epithelial-mesenchymal transition [82]. By 
studying these modifications, scientists can gain a deeper 
understanding of the mechanisms of gene regulation and 
their roles in biology and disease [83].

Publicly available sources
Many types of omic data have been gathered and used for 
the establishment of publicly available databases, accel-
erating the step of biomarker discovery processes. As 
well-known, The Cancer Genome Atlas (TCGA) is a vast 
collection of genetic data, combining over 11,158 sam-
ples across 32 cancer types [84]. This resource compiles 
detailed genetic information based on microarrays and 
next-generation sequencing methods, including RNA 
sequencing (RNAseq), microRNA sequencing (miRNA-
seq), DNA sequencing (DNAseq), SNP-based platforms, 
array-based DNA methylation sequencing, and reverse-
phase protein array (RPPA) [85]. According to the TCGA 
database, Miao’s team comprehensively investigated the 
variations of EC specimens at the genomic, transcrip-
tomic, and epigenetic levels, resulting in 80 cancer-testis 
antigens (CTAs) genes more abundant in EC than in nor-
mal tissues. Among them, highly expressed TTK protein 
kinase (TTK), critical in driving EMT and chemoresis-
tance, was significantly linked with lower survival in EC 
patients, showing the potential of being biomarker [86]. 
The Gene Expression Omnibus (GEO, ​h​t​t​p​​:​/​/​​w​w​w​.​​n​c​​b​i​.​​
n​l​m​​.​n​i​h​​.​g​​o​v​/​g​e​o​/) is a global public database committed 
to the storage of high-throughput microarray and next-
generation sequencing functional genomic datasets. In 
Wu’s study, TCGA and GEO were integrated to build and 
validate a prognostic model for EC malignancy predic-
tion [87]. Proteomics offers a way to link gene alterations 
and cellular physiology. The Clinical Proteomic Tumor 
Analysis Consortium (CPTAC) provides the first multi-
omics database that integrates mass spectrometry (MS)-
based global proteomics data, expanding the support for 
TCGA samples [84, 88]. Combining the clinicopatho-
logical data from the TCGA, GEO, and CPTAC, Zhang 
found the gene products of S100A2 highly expressed in 
EC tissue at both the mRNA and protein levels, related to 
IL-17 signaling pathways [89]. The Human Protein Atlas 
(HPA) focuses on protein expression, distribution and 
localization, which aims to map all the human proteins in 
cells, tissues, and organs using the integration of various 
omics technologies, providing antibody-based imaging, 
mass spectrometry-based proteomics, clinical and his-
topathological details [90]. Through HPA database, Zhu 
measured the functions of TIMM8A in EC, resulting it 
could be a biomarker to predict the efficacy of anti-PD-
L1 therapy [91].

Bioinformatics analysis of biomarker discovery
The emergence of numerous databases has made inte-
gration analysis possible, which is valuable in disease 
research, providing a more comprehensive view of the 
biological systems by considering the complex interac-
tions between different types of molecular data. Accord-
ing to the definition of “proteomic biomarker” from the 
Mischak study [92], we could describe “biological marker” 
at different expression levels as specific gene products 
that are linked with specific conditions. Biomarkers could 
be used to assess the risk of disease malignancy, declining 
the death ratio of the patients. Understanding the clini-
cal questions is the most important issue that needs to 
be considered in biomarker discovery. Under the clini-
cal question’s definition, the experimental workflow will 
be built properly, including sample type selection, case-
control design, matched collection procedure, and deci-
sion of research direction underlying biological processes 
associated with clinical symptoms. Sufficient clinical data 
and matched information are beneficial to biomarker dis-
covery. Detailed clinical information accompanying the 
samples is essential, such as sex, age, disease subtypes, 
disease stage, diagnosis, long-term follow-up data, etc. 
The factors could affect biomarker levels and have value 
in the predictive process, reflecting the correlations with 
disease progression or treatment response.

Here, a general workflow of biomarker discovery has 
been shown in Fig.  2. With advances in high-through-
put techniques, the abundance of omics data generated 
makes it possible to combine machine learning algo-
rithms, enhancing this field development. The appli-
cation of machine learning in biomarker discovery is 
greatly impactful. Machine learning can process and 
analyze large-scale biomedical datasets, identifying com-
plex patterns and associations in data and mining poten-
tial biomarker candidates [93, 94]. The performance of 
algorithm models is often improved with the increase in 
training data size. More data can help the model capture 
more complex patterns, get a better generalization abil-
ity, and improve the robustness to face the noise, per-
forming more reliable predictions. Bioinformatics data 
have unique characteristics, such as high dimensionality, 
complexity, heterogeneity, noise, and multiscale nature, 
which make building the data analysis workflow a huge 
challenge.

To counterwork the difficulty of high dimensional 
data display, data dimensionality reduction was used to 
reduce the number of variables in a dataset through a 
mathematical transformation while preserving data fea-
tures as much as possible. Principal Component Analy-
sis (PCA) [95], Linear discriminant analysis (LDA) [96], 
t-Distributed Stochastic Neighbor Embedding (t-SNE) 
[97], and Uniform Manifold Approximation and Projec-
tion (UMAP) [98] are commonly used in data dimension 

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/


Page 6 of 12An et al. Clinical Proteomics           (2025) 22:15 

reduction (Table 1). They help people better understand 
data patterns and distribution by visualization, promot-
ing the development of analytical strategies.

Feature selection is a fundamental phase in numerous 
machine learning workflows, aiming to streamline the 
task by discarding extraneous factors that might impact 
model performance. The gene products were treated as 
features to distinguish different types of samples in stud-
ies [99]. High-quality feature data directly influence the 
accuracy and trustworthiness of biomarker identifica-
tion. It improves data utilization efficiency and bolsters 
the validity and clinical applicability of research findings. 
There are many algorithms (Table 2) available for feature 
selection, such as Random Forest (RF) [100] algorithm, 
Boruta [101] (based on RF algorithm), Recursive Feature 

Elimination (RFE) [102], and Least Absolute Shrinkage 
and Selection Operator (LASSO) [103].

Clustering or classification algorithms (Table  3), such 
as Hierarchical clustering (HC) [104], K-means [105], 

Table 1  Comparison of four dimensionality reduction 
algorithms
Algorithms Advantages Disadvantages
PCA[95] Simple and easy to under-

stand, high computational 
efficiency, retains global 
structure

Linear assump-
tion, sensitive to 
outliers, limited 
interpretability

LDA[96] Good classification perfor-
mance, suitable for labeled 
data

Linear assumption, 
sensitive to high-
dimensional data

t-SNE[97] Excellent local structure pres-
ervation, suitable for nonlinear 
data

High computation-
al complexity, sensi-
tive to parameters, 
difficult to interpret

UMAP[98] Preserves both global and 
local structure, high computa-
tional efficiency, flexibility

Sensitive to param-
eter selection, lim-
ited interpretability

Table 2  Comparison of four feature selection algorithms
Algorithms Advantages Disadvantages
RF[100] Handles large datasets with 

high dimensionality well, 
robust to overfitting, can 
handle both classification 
and regression tasks

Can be computationally 
intensive and slow to 
train, less interpretable, 
may require tuning of 
hyperparameters for 
optimal performance

Boruta[101] Comprehensive feature 
selection by comparing 
actual features with shadow 
features, robust to noise 
and missing values, auto-
mated process with minimal 
human intervention, suitable 
for various data types

High computational cost 
due to multiple model 
training, sensitive to 
parameters of the under-
lying random forest, may 
select redundant fea-
tures in highly correlated 
datasets, less effective 
with small sample sizes

RFE[102] Effective for selecting impor-
tant features, can improve 
model performance by 
reducing overfitting, works 
well with various types of 
models

Computationally ex-
pensive, especially with 
large datasets, may not 
perform well with highly 
correlated features

LASSO[103] Performs both variable 
selection and regularization, 
can handle multicollinearity 
by shrinking coefficients, 
produces sparse models, 
making interpretation easier

Sensitive to the choice of 
regularization parameter, 
may exclude important 
variables if they are 
correlated with others, 
assumes a linear relation-
ship between predictors 
and the response

Fig. 2  Schematic representation of multi-omics approaches toward diagnosis in endometrial cancer
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k-Nearest Neighbor (KNN) [106, 107], and Support Vec-
tor Machine (SVM) [107, 108], play an important role in 
feature selection, as they can group genes with similar 
expression patterns, which helps reduce the dimensional-
ity of the data, extract representative features, and sim-
plify subsequent analysis. Grouped gene products with 
similar functions could reveal functional modules and 
potentially related biological pathways. Meanwhile, clas-
sifying samples into different subtypes based on their 
molecular characteristics is helpful in specific pattern 
identification under different biological conditions, pro-
viding new perspectives to study the disease mechanism 
and promotes the discovery process of biomarkers.

Differential expression analysis is essential for dis-
cerning notable differences in gene expression, protein 
levels, or other molecular measurements across varying 
conditions, such as between states of health and illness, 
and distinct treatments with temporal intervals. DESeq2 
[109] is one of the algorithms for differential expression 
analysis in RNA-seq data, which estimates the variance 
and mean of gene expression through a model to iden-
tify differentially expressed genes, using shrinkage esti-
mation for dispersions and fold changes to improve the 
stability and interpretability of estimates. edgeR [110] is 
a Bioconductor software package for examining the dif-
ferential expression of replicated count data, which was 
constructed by an overdispersed Poisson [111] model and 
Empirical Bayes [112, 113] methods, improving the reli-
ability of inference. limma [114] is another Bioconductor 

software package, suitable for microarray and RNA seq 
data, using empirical Bayesian methods and linear mod-
els to evaluate gene expression differences, emphasizing 
statistical power and multivariate analysis.

Survival information is invaluable in evaluating disease 
prognosis and treatment response. It can be adopted to 
measure the relationship between molecular charac-
teristics and disease progression. To address the need, 
the Cox proportional-hazards model (COX) [115] and 
Kaplan-Meier survival analysis (KM) [116] have been 
widely utilized. Cox model is a statistical technique that 
allows researchers to determine whether there exists a 
statistically significant association between the feature 
patterns and the clinical events occurring over time. In 
contrast to the Cox model, the KM method emphasizes 
the assessment of survival time, facilitating the graphi-
cal representation of survival outcomes for patients with 
specific feature patterns, complementing the insights 
from the Cox model. In Li’s research [99], univariate Cox 
regression analysis was employed to assess the impact of 
individual genes on the incidence of endometrial can-
cer. Meanwhile, the findings from the KM method were 
combined to provide Death-associated protein kinase-3 
(DAPK3) and recombination signal binding protein for 
immunoglobulin kappa J region (RBPJ) as the biomarker 
candidates through Boruta and differential expression 
analysis. According to biomarker candidates of EC and 
multi-variate Cox regression, they built a linear model for 
the patient’s prognosis. The methods mentioned above 
are used both integratively and partially in the discovery 
of tumor biomarkers.

Biomarker candidate validation and application
Experimental validation is crucial because it could con-
firm the true connections between biomarkers and 
clinical outcomes, guarantee the biomarkers’ reliability, 
reproducibility, specificity, sensitivity, and biological rel-
evance, and ensure the biomarker is not only statistically 
associated with the disease but is also practically useful 
for diagnosis, prognosis, or monitoring in a real-world 
clinical setting. The selection of experimental method-
ologies should depend on the types of gene products, 
ensuring appropriate validation consistent with the spe-
cific molecules under study.

Quantitative Polymerase Chain Reaction (qPCR), also 
known as real-time PCR, which is used to amplify and 
quantify a targeted DNA molecule. qPCR has several 
advantages, such as high sensitivity and specificity, real-
time monitoring, high-throughput, and versatility [117]. 
qPCR can detect small amounts of target sequences and 
differentiate variants of similar nucleic acid sequences 
accurately. In Chen’s study [118], qPCR has been uti-
lized to identify TMEFF2 as the biomarker of EC. Immu-
nohistochemistry (IHC) is a technique for detecting 

Table 3  Comparison of four algorithms
Algorithms Advantages Disadvantages
HC[104] Does not require the 

number of clusters to 
be specified in advance, 
produce the dendrogram, 
can capture complex 
cluster shapes

Computationally 
expensive, sensitive 
to noise and outliers, 
difficult to determine 
the optimal number 
of clusters from the 
dendrogram

K-means[105] Simple and easy to imple-
ment, efficient for large 
datasets with a known 
number of clusters

Requires the number 
of clusters to be speci-
fied in advance, sensi-
tive to initial centroid 
placement and outliers

KNN[106, 107] Simple and intuitive, ef-
fective for small datasets 
and when the decision 
boundary is complex, no 
explicit training phase

Primarily used for 
classification, compu-
tationally expensive 
during prediction, 
sensitive to irrelevant 
features and the choice 
of distance metric

SVM[107, 108] Effective in high-
dimensional spaces, can 
model complex decision 
boundaries using kernel 
functions, robust to 
overfitting in high-
dimensional space

Requires careful tuning 
of parameters (e.g., ker-
nel choice, regulariza-
tion), computationally 
intensive, especially 
with large datasets
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specific proteins through antigen antibody reactions in 
tissue sections. It typically uses fluorescent or enzyme 
labeled antibodies, combined with colorimetric reactions 
or fluorescent signals, to directly visualize the expres-
sion and localization of target proteins on tissue slices. 
Through IHC and qPCR, CCL25, CXCL10, CXCL12, 
and CXCL16 were validated for EC biomarker discovery 
[119]. Flow cytometry is employed to examine the physi-
cal and chemical characteristics of cells in a fluid suspen-
sion, including cell size, complexity, and the presence of 
specific surface markers or intracellular molecules. This 
technique enables the evaluation of thousands of cells 
per second, providing detailed information about indi-
vidual cells. Using this method, ERRα was measured 
and validated in EC tumorigenesis in Su’s research [120]. 
Western Blot (WB) is commonly used to detect specific 
proteins from tissue homogenate or extract. The high 
sensitivity of this technique facilitates the identifica-
tion of specific target proteins for research objectives. 
Blendi.et al. [121] and Małgorzata.et al. [122] used west-
ern blot as a validation method to confirm the ABRACL 
and HLA-G respectively as potential biomarkers in EC. 
Enzyme-Linked Immunosorbent Assay (ELISA) is a 
widely used biochemical technique for detecting and 
quantitating specific proteins or molecules in a sample. 
It has high specificity and sensitivity due to antigen-
antibody reaction, providing exceptional efficiency, and 
allowing for simultaneous analyses without the need for 
intricate sample pre-treatment procedures. Nonetheless, 
it’s important to note that ELISA assays typically focus 
on measuring one protein target per assay, constraining 
the simultaneous analysis of multiple biomarkers. In the 
context of endometrial cancer research, ELISA measures 
diverse biomarkers associated with the disease, such as 
tumor-associated antigens, cytokines, growth factors, or 
hormones [123]. For example, leptin was measured by 
ELISA and IHC in the study about EC progression [124]. 
Parallel Reaction Monitoring (PRM) is an advanced 
mass spectrometry-based technique used for targeted 
proteomics analysis This method enables the simultane-
ous detection and quantification of multiple proteins or 
peptides of interest in complex biological samples. PRM 
offers higher sensitivity, selectivity, and multiplexing 
capabilities compared to traditional shotgun proteomics 
approaches [125], making it an invaluable technique 
in the field of translational research and personalized 
medicine. After comparing the EC and non-EC tissues, 
Martinez-Garcia identified PERM, CADH1, SPIT1 and 
OSTP as the potential biomarkers by PRM [126]. Bio-
markers are commonly used to define and identify dif-
ferent molecular subtypes, which are associated with 
specific biomarkers that can predict patient prognosis 
and response to treatment. Several biomarkers have been 

used for prognostic, predictive of treatment response 
(Table 4) in EC studies through those methods [127, 128].

Conclusion and discussion
Despite the significant advances made by multi-omics 
technologies in uncovering potential biomarkers in 
recent years, the transition from discovery research to 
clinical practice continues to present widespread chal-
lenges. To design experiments scientifically, a clear grasp 
of medical issues and clinical symptoms is crucial, as the 
foundation for all steps of biomarker research. Multi-
omics techniques generate and analyze large amounts 
of data. Selecting proper sample types and matched data 
could help find the relationships between the molecular 
features and the corresponding disease symptoms, opti-
mizing the data integrative analysis. The advances in 
high-throughput technologies and the implementation 
of novel approaches combining machine learning algo-
rithms make multi-layer comprehensive analysis widely 
performed in biomarker discovery. Multi-omics aims to 
detect the complex pathophysiology of disease incidents, 
identifying risk factors and diagnostic cancer biomarkers. 
The complex cell signaling pathways leading to cancer 
development rely on the cumulative impact of changes 
across various expression levels. Therefore, a comprehen-
sive understanding of the various cancer types and stages 
necessitates the adoption of a multi-omics approach, 
accelerating the progression of translation into clinical 
practice and establishment into precision medicine.
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